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Abstract

A python program was created to analyse an arbitrary cross-section using the finite element method and output properties to be used
in structural design. The program also calculates normal and shear stresses resulting from axial force, bending moments, torsion
moment and transverse shear forces. This paper summarises the methodology and theory behind the computation of the various
properties.
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1. Introduction

The analysis of homogenous cross-sections is particularly
relevant in structural design, in particular for the design of steel
structures, where complex built-up sections are often utilised.
Accurate warping independent properties, such as the second
moment of area and section modulii, are crucial input for struc-
tural analysis and stress verification. Warping dependent prop-
erties, such as the Saint-Venant torsion constant and warping
constant are essential in the verification of slender steel struc-
tures when lateral-torsional buckling is critical.

Warping independent properties for basic cross-sections are
relatively simple to calculate by hand. However accurate warp-
ing independent properties, even for the most basic cross-
section, require solving several boundary value partial differ-
ential equations. This necessitates numerical methods in the
calculation of these properties, which can be extended to arbi-
trary complex sections.

This paper describes the theory and application of the finite
element method to cross-sectional analysis. An arbitrary cross-
section, as shown in Figure 1, is defined by a series of points,
segments and holes, and a cross-sectional analysis and stress
analysis is performed.

Figure 1: Arbitrary cross-section with adopted axis convention.
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2. Mesh Generation

The cross-section is meshed into quadratic superparamet-
ric1 triangular elements using the meshpy library for Python,
which utilises the package, Triangle, which is a two dimen-
sional quality mesh generator and delaunay triangulator written
by Jonathan Shewchuk for C++. For the calculation of warping
independent (area) properties, the mesh quality is not important
as superparametric elements have a constant Jacobian. How-
ever, for the calculation of warping dependent properties, mesh
quality and refinement is critical and thus the user is encouraged
to ensure an adequate mesh is generated.

3. Finite Element Preliminaries

3.1. Element Type
Quadratic six-noded triangular elements were implemented

in the program in order to utilise the finite element formulations
for calculating the section properties. Figure 2 shows a typical
six-noded triangular element.

Figure 2: Six noded triangular element [1].

The quadratic triangular element was used due to the ease
of mesh generation and convergence advantages over the linear
triangular element.

1The edges of the quadratic superparametric triangle are straight and they
have their mid-nodes located at the mid-point between adjacent corner nodes
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3.2. Isoparametric Representation

An isoparametric coordinate system has been used to evalu-
ate the shape functions of the parent element and map them to
a generalised triangular element within the mesh. Three inde-
pendent isoparametric coordinates (η, ξ, ζ) are used to map the
six-noded triangular element as shown in Figure 3.

Figure 3: Isoparametric coordinates for the two dimensional triangular element.

3.2.1. Shape Functions
The shape functions for the six-noded triangular element in

terms of the isoparametric coordinates are as follows:

N1 = η(2η − 1)
N2 = ξ(2ξ − 1)
N3 = ζ(2ζ − 1)
N4 = 4ηξ
N5 = 4ξζ
N6 = 4ηζ

(1)

The above shape functions can be combined into the shape
function row vector: N = [N1 N2 N3 N4 N5 N6].

3.2.2. Cartesian Partial Derivatives
The partial derivatives of the shape functions with respect to

the cartesian coordinates, denoted as the B matrix, are required
in the finite element formulations of various section properties.
Felippa [1] describes the multiplication of the Jacobian matrix
(J) and the partial derivative matrix (P):

J P =


1 1 1∑
xi
∂Ni
∂η

∑
xi
∂Ni
∂ξ

∑
xi
∂Ni
∂ζ∑

yi
∂Ni
∂η

∑
yi
∂Ni
∂ξ

∑
yi
∂Ni
∂ζ



∂η
∂x

∂η
∂y

∂ξ
∂x

∂ξ
∂y

∂ζ
∂x

∂ζ
∂y

 =

0 0
1 0
0 1

 (2)

The determinant of the Jacobian matrix scaled by one half is
equal to the Jacobian:

J =
1
2

det J (3)

Equation 2 can be re-arranged to evaluate the partial derivate
matrix (P):

P = J−1

0 0
1 0
0 1

 (4)

As described in [1], the derivates of the shape functions can
be evaluated using the above expressions:

BT =
[
∂Ni
∂x

∂Ni
∂y

]
[6 x 2]

=
[
∂Ni
∂η

∂Ni
∂ξ

∂Ni
∂ζ

]
[6 x 3]

[
P
]

[3 x 2]

(5)

where the derivatives of the shape functions with respect
to the isoparametric parameters can easily be evaluated from
Equation 1, resulting in the following expression for the B ma-
trix:

BT =



4η − 1 0 0
0 4ξ − 1 0
0 0 4ζ − 1
4ξ 4η 0
0 4ζ 4ξ
4ζ 0 4η


J−1

0 0
1 0
0 1

 (6)

3.3. Numerical Integration

Three different integration schemes are utilised in the cross-
section analysis in order to evaluate the integrals of varying or-
der polynomials. The one point, three point and six point inte-
gration schemes are summarised in Figure 4. The locations and
weights of the Gauss points are summarised in Table 1.

(a) 1 pt. integration;
p-degree = 1.

(b) 3 pt. integration;
p-degree = 2.

(c) 6 pt. integration;
p-degree = 4.

Figure 4: Six-noded triangle integration schemes with maximum degree of
polynomial that is evaluated exactly [1].

Scheme η-location ξ-location ζ-location weight

1 pt. 1
3

1
3

1
3 1

3 pt.

2
3
1
6
1
6

1
6
2
3
1
6

1
6
1
6
2
3

1
3
1
3
1
3

6 pt.

1 − 2g2
g2
g2
g1

1 − 2g1
g1

g2
1 − 2g2

g2
g1
g1

1 − 2g1

g2
g2

1 − 2g2
1 − 2g1

g1
g1

w2
w2
w2
w1
w1
w1

Table 1: Locations and weights for the numerical integration schemes [1].

The parameters for the six point numerical integration are
shown in Equation 7.
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g1,2 =
1
18

8 − √10 ±

√
38 − 44

√
2
5


w1,2 =

620 ±
√

213125 − 53320
√

10

3720

(7)

Bringing together the isoparametric representation of the six-
noded triangular element and numerical integration, the integra-
tion of a function f (η, ξ, ζ) proves to be simpler than integrating
the corresponding function f (x, y) over the cartesian element
[2]. The transformation formula for integrals is:

∫
Ω

f (x, y) dx dy =

∫
Ωr

f (η, ξ, ζ) J dη dξ dζ

=

n∑
i

wi f (ηi, ξi, ζi) Ji

(8)

where the sum is taken over the integration points, wi is the
weight of the current integration point and Ji is the Jacobian at
the current integration point2.

3.4. Extrapolation to Nodes
The most optimal location to sample stresses are at the inte-

gration points, however the results are generally plotted using
nodal values. As a result, the stresses at the integration points
need to be extrapolated to the nodes of the element. The extrap-
olated stresses at the nodes (σ̃g) can be calculated through the
multiplication of a smoothing matrix (H) and the stresses at the
integration points (σg) [2]:

σ̃g = H−1 σg (9)

where the H matrix contains the row vectors of the shape
functions at each integration point:

H =



N(η1, ξ1, ζ1)
N(η2, ξ2, ζ2)
N(η3, ξ3, ζ3)
N(η4, ξ4, ζ4)
N(η5, ξ5, ζ5)
N(η6, ξ6, ζ6)


(10)

Where two or more elements share the same node, nodal av-
eraging is used to evaluate the nodal stress.

3.5. Lagrangian Multiplier
As described in Sections 4.9 and 4.10, partial differential

equations are to be solved with purely Neumann boundary con-
ditions. In the context of the torsion and shear problem, this
involves the inversion of a nearly singular global stiffness ma-
trix. After shifting the domain such that the centroid coincides

2Recall that the Jacobian is constant for the superparametric six-noded tri-
angular element

with the global origin, the Lagrangian multiplier method is used
to solve the set of linear equations of the form Ku = F by intro-
ducing an extra constraint on the solution vector whereby the
mean value is equal to zero. Larson et. al [3] describe the re-
sulting modified stiffness matrix, and solution and load vector:[

K CT

C 0

] [
u
λ

]
=

[
F
0

]
(11)

where C is a row vector of ones and λ may be though of
as a force acting to enforce the constraints, which should be
relatively small when compared to the values in the force vector
and can be omitted from the solution vector.

4. Finite Element Formulations of Cross-Section Properties

4.1. Cross-Sectional Area
The area A of the cross-section is given by [2]:

A =

∫
A

dx dy =
∑

e

Ae =
∑

e

∫
Ω

Je dη dξ dζ (12)

As the Jacobian is constant over the element, the integration
over the element domain in Equation 12 can be performed using
one point integration:

A =
∑

e

1∑
i=1

wiJi (13)

4.2. First Moments of Area
The first moments of area are defined by:

Qx =

∫
A

y dA =
∑

e

∫
Ω

NyeJe dη dξ dζ

Qy =

∫
A

x dA =
∑

e

∫
Ω

NxeJe dη dξ dζ
(14)

where xe and ye are column vectors containing the cartesian
coordinates of the element nodes. Equation 14 can be evalu-
ated using three point integration as the shape functions (N) are
quadratic:

Qx =
∑

e

3∑
i=1

wiNiyeJe

Qy =
∑

e

3∑
i=1

wiNixeJe

(15)

4.3. Centroids
The coordinates of the centroid are found from:

xc =
Qy

A

yc =
Qx

A

(16)
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4.4. Second Moments of Area

The second moments of area are defined by:

Ixx =

∫
A

y2 dA =
∑

e

∫
Ω

(Nye)2Je dη dξ dζ

Iyy =

∫
A

x2 dA =
∑

e

∫
Ω

(Nxe)2Je dη dξ dζ

Ixy =

∫
A

xy dA =
∑

e

∫
Ω

NyeNxeJe dη dξ dζ

(17)

Equation 17 can be evaluated using six point integration as
the square of the shape functions are quartic:

Ixx =
∑

e

6∑
i=1

wi(Niye)2Je

Iyy =
∑

e

6∑
i=1

wi(Nixe)2Je

Ixy =
∑

e

6∑
i=1

wiNyeNxeJe

(18)

Equation 18 lists the second moments of area about the
global coordinate system axis, which is chosen arbitrarily by
the user. These properties can be found about the centroidal
axis of the cross-section by using the parallel axis theorem:

Ix̄x = Ixx − yc
2A = Ixx −

Qx
2

A

Iȳy = Iyy − xc
2A = Iyy −

Qy
2

A

Ix̄y = Ixy − xcycA = Ixy −
QxQy

A

(19)

4.5. Radii of Gyration

The radii of gyration can be calculated from the second mo-
ments of area and the cross-sectional area as follows:

rx =

√
Ixx

A

ry =

√
Iyy

A

(20)

4.6. Elastic Section Modulii

The elastic section modulii can be calculated from the second
moments of area and the extreme (min. and max.) coordinates
of the cross-section in the x and y-directions:

Z+
xx =

Ix̄x

ymax − yc

Z−xx =
Ix̄x

yc − ymin

Z+
yy =

Iȳy

xmax − xc

Z−yy =
Iȳy

xc − xmin

(21)

4.7. Plastic Section Modulii
For a homogenous section, the plastic centroid can be deter-

mined by by finding the intersection of the two lines that evenly
divide the cross-sectional area in both the x and y directions. A
suitable procedure could not be found in literature and thus an
algorithm involving the iterative incrementation of the plastic
centroid was developed. The algorithm is described in Figure
5.

Figure 5: Algorithm used to calculate plastic neutral axis.

Once the plastic centroid has been located, the plastic section
modulii can be readily computed using the following expres-
sion:

S xx =
A
2

∣∣∣yc,t − yc,b

∣∣∣
S yy =

A
2

∣∣∣xc,t − xc,b

∣∣∣ (22)
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where A is the cross-sectional area, and xc,t and xc,b refer to
the centroids of the top half section and bottom half section
respectively.

4.8. Principal Axis Properties
The principal bending axes are determined by calculating the

principal moments of inertia [2]:

I11 =
Ix̄x + Iȳy

2
+ ∆

I22 =
Ix̄x + Iȳy

2
− ∆

(23)

where:

∆ =

√(
Ix̄x − Iȳy

2

)2

+ Ix̄y
2 (24)

The angle between the x̄ axis and the axis belonging to the
largest principal moment of inertia can be computed as follows:

φ = tan−1 Ix̄x − I11

Ix̄y
(25)

The prinicpal section modulii require the calculation of the
perpendicular distance from the principal axes to the extreme
fibres. All the nodes in the mesh are considered with vector
algebra used to compute the perpendicular distances and the
minimum and maximum distances identified. The perpendicu-
lar distance from a point P to a line parallel to −→u that passes
through Q is given by:

d = |
−−→
PQ × −→u | (26)

The location of the point is checked to see whether it is above
or below the principal axis. Again vector algebra is used to
check this condition. The condition in Equation 27 will result
in the point being above the −→u axis.

−−→
QP × −→u < 0 (27)

Using Equations 26 and 27, the principal section modulii can
be calculated similar to Equations 21 and 22.

4.9. Torsion Constant
The Saint-Venant torsion constant (Jt) can be obtained by

solving the partial differential equation in Equation 28 for the
warping function, ω, subject to the boundary condition de-
scribed in Equation 29.

∇2ω = 0 (28)

∂ω

∂x
nx +

∂ω

∂y
ny = ynx − xny (29)

Pilkey [2] shows that by using the finite element method, this
problem can be reduced to a set of linear equations of the form:

Kω = F (30)

where K and F are assembled through summation at element
level. The element equations for the eth element are:

keωe = fe (31)

with the stiffness matrix defined as:

ke =

∫
Ω

BTBJe dη dξ dζ (32)

and the load vector defined as:

fe =

∫
Ω

BT
[

Ny
−Nx

]
Je dη dξ dζ (33)

Applying numerical integration to Equations 32 and 33 re-
sults in the following expressions:

ke =

3∑
i=1

wiBT
i BiJe

fe =

6∑
i=1

wiBT
i

[
Niye
−Nixe

]
Je

(34)

Once the warping function has been evaluated, the Saint-
Venant torsion constant can be calculated as follows:

J = Ixx + Iyy − ω
TKω (35)

4.10. Shear Properties

The shear beahviour of the cross-section can be described by
Saint-Venant’s elasticity solution for a homogenous prismatic
beam subjected to transverse shear loads [2]. Through cross-
section equilibrium and linear-elasticity, an expression for the
shear stresses resulting from a transverse shear load can be de-
rived. Pilkey [2] explains that this is best done through the
introduction of shear functions, Ψ and Φ, which describe the
distribution of shear stress within a cross-section resulting from
an applied transverse load in the x and y directions respectively.
These shear functions can be obtained by solving the following
uncoupled partial differential equations:

∇2Ψ = 2(Ix̄yy − Ix̄xx)

∇2Φ = 2(Ix̄yx − Iȳyy)
(36)

subject to the respective boundary conditions:

∂Ψ

∂n
= n · d

∂Φ

∂n
= n · h

(37)

where n is the normal unit vector at the boundary and d and
h are defined as follows:
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d = ν

(
Ix̄x

x2 − y2

2
− Ix̄yxy

)
i + ν

(
Ix̄xxy + Ix̄y

x2 − y2

2

)
j

h = ν

(
Iȳyxy − Ix̄y

x2 − y2

2

)
i − ν

(
Ix̄yxy + Iȳy

x2 − y2

2

)
j

(38)

Pilkey [2] shows that the solution to Equation 36 subject to
the boundary conditions in Equation 37 can be solved using the
finite element method, resulting in a set of linear equations, at
element level, of the form:

keΨe = fe
x

keΦe = fe
y

(39)

The local stiffness matrix, ke, is identical to the matrix used
to determine the torsion constant:

ke =

∫
Ω

BTBJe dη dξ dζ (40)

The load vectors are defined as:

fe
x =

∫
Ω

[
ν

2
BT

[
d1
d2

]
+ 2(1 + ν)NT(Ix̄xNx − Ix̄yNy)

]
Je dη dξ dζ

fe
y =

∫
Ω

[
ν

2
BT

[
h1
h2

]
+ 2(1 + ν)NT(IȳyNy − Ix̄yNx)

]
Je dη dξ dζ

(41)

where:

d1 = Ix̄xr − Ix̄yq d2 = Ix̄yr + Ix̄xq

h1 = −Ix̄yr + Iȳyq h2 = −Iȳyr − Ix̄yq

r = (Nx)2 − (Ny)2 q = 2NxNy

Applying numerical integration to Equations 40 and 41 re-
sults in the following expressions:

ke =

3∑
i=1

wiBT
i BiJe

fe
x =

6∑
i=1

wi

[
ν

2
BT

i

[
d1,i
d2,i

]
+ 2(1 + ν)NT

i (Ix̄xNixe − Ix̄yNiye)
]

Je

fe
y =

6∑
i=1

wi

[
ν

2
BT

i

[
h1,i
h2,i

]
+ 2(1 + ν)NT

i (IȳyNiye − Ix̄yNixe)
]

Je

(42)

4.10.1. Shear Centre
The shear centre can be computed consistently based on elas-

ticity, or through Trefftz’s definition, which is based on thin-
wall assumptions [2].

Elasticity. Pilkey [2] demonstrates that the coordinates of the
shear centre are given by the following expressions:

xs =
1
∆s

[
ν

2

∫
Ω

(Iȳyx + Ix̄yy)
(
x2 + y2

)
dΩ −

∫
Ω

g · ∇Φ dΩ

]
ys =

1
∆s

[
ν

2

∫
Ω

(Ix̄xy + Ix̄yx)
(
x2 + y2

)
dΩ +

∫
Ω

g · ∇Ψ dΩ

]
(43)

where:

∆s = 2(1 + ν)(Ix̄xIȳy − Ix̄y
2)

g = yi − xj
(44)

The first integral in Equation 43 can be evaluated using
quadrature for each element. The second integral in Equation
43 can be simplified once the shear functions, Ψ and Φ, have
been obtained:

∫
Ω

g · ∇Φ dΩ = FTΦ∫
Ω

g · ∇Ψ dΩ = FTΨ

(45)

where F is the global load vector determined for the torsion
problem in Equation 30. The resulting expression for the shear
centre therefore becomes:

xs =
1
∆s

[(
ν

2

6∑
i=1

wi(IȳyNixe + Ix̄yNiye)
(
(Nixe)2+

(Niye)2
)
Je

)
− FTΦ

]
(46)

ys =
1
∆s

[(
ν

2

6∑
i=1

wi(Ix̄xNiye + Ix̄yNixe)
(
(Nixe)2+

(Niye)2
)
Je

)
+ FTΨ

]
(47)

Trefftz’s Definition. Using thin walled assumptions, the shear
centre coordinates according to Trefftz’s definition are given by:

xs =
Ix̄yIxω − IȳyIyω

Ix̄xIȳy − Ix̄y
2

ys =
Ix̄xIxω − Ix̄yIyω

Ix̄xIȳy − Ix̄y
2

(48)

where the sectorial products of area are defined as:

Ixω =

∫
Ω

xω(x, y) dΩ

Iyω =

∫
Ω

yω(x, y) dΩ

(49)
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The finite element implementation of the integral in Equation
49 is shown below:

Ixω =
∑

e

6∑
i=1

wiNixeNiωeJe

Iyω =
∑

e

6∑
i=1

wiNiyeNiωeJe

(50)

4.10.2. Shear Deformation Coefficients
The shear deformation coefficients are used to calculate the

shear area of the section as a result of transverse loading. The
shear area is defined as As = ksA. Pilkey [2] describes the finite
element formulation used to determine the shear deformation
coefficients:

κx =
∑

e

∫
Ω

(
ΨeTBT − dT

)
(BΨe − d) Je dΩ

κy =
∑

e

∫
Ω

(
ΦeTBT − hT

)
(BΦe − h) Je dΩ

κxy =
∑

e

∫
Ω

(
ΨeTBT − dT

)
(BΦe − h) Je dΩ

(51)

where the shear areas are related to κx and κy by:

ks,xA =
∆s

2

κx

ks,yA =
∆s

2

κy

ks,xyA =
∆s

2

κxy

(52)

The finite element formulation of Equation 51 is described in
Equation 53.

κx =
∑

e

6∑
i=1

wi

ΨeTBT
i −

ν

2

[
d1,i
d2,i

]T (BiΨ
e −

ν

2

[
d1,i
d2,i

])
Je

κy =
∑

e

6∑
i=1

wi

ΦeTBT
i −

ν

2

[
h1,i
h2,i

]T (BiΦ
e −

ν

2

[
h1,i
h2,i

])
Je

κxy =
∑

e

6∑
i=1

wi

ΨeTBT
i −

ν

2

[
d1,i
d2,i

]T (BiΦ
e −

ν

2

[
h1,i
h2,i

])
Je

(53)

4.10.3. Warping Constant
The warping constant, Γ, can be calculated from the warping

function (ω) and the coordinates of the shear centre [2]:

Γ = Iω −
Qω

2

A
− ysIxω + xsIyω (54)

where the warping moments are calculated as follows:

Qω =

∫
Ω

ω dΩ =
∑

e

3∑
i=1

wiNiωeJe

Iω =

∫
Ω

ω2 dΩ =
∑

e

6∑
i=1

wi(Niωe)2Je

(55)

5. Cross-Section Stresses

Cross-section stresses resulting from an axial force, bending
moments, a torsion moment and shear forces, can be evaluated
at the integration points within each element. Section 3.4 de-
scribes the process of extrapolating the stresses to the element
nodes and the combination of the results with the adjacent ele-
ments through nodal averaging.

5.1. Axial Stresses

The normal stress resulting from an axial force Nzz at any
point i is given by:

σzz =
Nzz

A
(56)

5.2. Bending Stresses

5.2.1. Global Axis Bending
The normal stress resulting from a bending moments Mxx and

Myy at any point i is given by [2]:

σzz = −
Ix̄yMxx + Ix̄xMyy

Ix̄xIȳy − Ix̄y
2 x̄i +

IȳyMxx + Ix̄yMyy

Ix̄xIȳy − Ix̄y
2 ȳi (57)

5.2.2. Principal Axis Bending
Similarly, the normal stress resulting from a bending mo-

ments M11 and M22 at any point i is given by:

σzz = −
M22

I2̄2
x̄1,i +

M11

I1̄1
ȳ2,i (58)

5.3. Torsion Stresses

The shear stresses resulting from a torsion moment Mzz at
any point i within an element e are given by [2]:

τe =

[
τzx

τzy

]e

=
Mzz

J

(
Biω

e −

[
Niye
−Nixe

])
(59)

5.4. Shear Stresses

The shear stresses resulting from transverse shear forces Vxx

and Vyy at any point i within an element e are given by [2]:

[
τzx

τzy

]e

=
Vxx

∆s

(
BiΨ

e −
ν

2

[
d1,i
d2,i

])
+

Vyy

∆s

(
BiΦ

e −
ν

2

[
h1,i
h2,i

])
(60)
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5.5. von Mises Stress

The von Mises stress can be determined from the net axial
and shear stress as follows [2]:

σvM =

√
σzz

2 + 3(τzx
2 + τzy

2) (61)

6. Validation

The results from the python program were further validated
through comparison with results obtained from the Strand7
beam section generator for the analysis of a doubly symmetric
I-section and an asymmetric box section. The warping indepen-
dent properties (Sections 4.8 to 4.1) showed exact agreement
with the Strand7 results. The results for the warping dependent
properties are summarised below, in which ν = 0.

6.1. Doubly Symmetric I-Section

A straight edged doubly symmetric I-section was analysed
for cross-sectional properties, with a depth of 200 mm, width
of 100 mm, flange thickness of 10 mm and web thickness of 5
mm. A mesh was generated with a maximum area of 1 mm2

as shown in Figure 6. The warping dependent properties are
shown in Table 2 and are compared with the Strand7 results.

Figure 6: Mesh used for the determination of warping dependent properties for
a doubly symmetric I-section.

Section Property Python Strand7 Variation
J [mm4] 71217.28 71149.00 0.096%
Iw [mm6] 1.5035 × 1010 1.5035 × 1010 0.003%

As,x [mm2] 1683.27 1683.67 0.024%
As,y [mm2] 942.54 942.61 0.007%

Table 2: Comparison of python and Strand7 results.

6.2. Asymmetric Box Section

A multi-core box section, no axes of symmetry, was analysed
for cross-section properties, with a total width of 1300 mm, a
depth of 300 mm and thickness of 50 mm. A mesh was gen-
erated with a maximum area of 50 mm2 as shown in Figure 7.
The warping dependent properties are shown in Table 3 and are
compared with the Strand7 results. Figure 8 shows the various
centroids from the python analysis.

Figure 7: Mesh used for the determination of warping dependent properties for
an asymmetric box section.

Section Property Python Strand7 Variation
J [mm4] 5.7746 × 109 5.7685 × 109 0.106%
Iw [mm6] 1.1726 × 1014 1.1726 × 1014 0.002%

As,11 [mm2] 69923.98 69989.90 0.094%
As,22 [mm2] 104830.80 104876.00 0.043%
xs,11 [mm] -21.6081 -21.6098 0.008%
ys,22 [mm] 30.1824 30.1840 0.005%

Table 3: Comparison of python and Strand7 results.

Figure 8: Elastic and plastic centroids, and shear centre for the asymmetric box
section.
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