Source code for concreteproperties.analysis_section

from __future__ import annotations

from dataclasses import dataclass
from math import isinf
from typing import TYPE_CHECKING, List, Tuple

import numpy as np
import triangle
from matplotlib.colors import ListedColormap

import concreteproperties.utils as utils
from concreteproperties.material import Concrete
from concreteproperties.post import plotting_context

if TYPE_CHECKING:
    import matplotlib

    from concreteproperties.material import Material
    from concreteproperties.pre import CPGeom


[docs]class AnalysisSection: """Class for an analysis section to perform a fast analysis on meshed sections.""" def __init__( self, geometry: CPGeom, ): """Inits the AnalysisSection class. :param geometry: Geometry object """ self.material = geometry.material # create simple mesh tri = {} # create tri dictionary tri["vertices"] = geometry.points # set point tri["segments"] = geometry.facets # set facets if geometry.holes: tri["holes"] = geometry.holes # set holes # coarse mesh self.mesh = triangle.triangulate(tri, "p") # extract mesh data self.mesh_nodes = np.array(self.mesh["vertices"], dtype=np.dtype(float)) try: self.mesh_elements = np.array(self.mesh["triangles"], dtype=np.dtype(int)) except KeyError: # if there are no triangles self.mesh_elements = [] # build elements self.elements: List[Tri3] = [] for node_ids in self.mesh_elements: x1 = self.mesh_nodes[node_ids[0]][0] y1 = self.mesh_nodes[node_ids[0]][1] x2 = self.mesh_nodes[node_ids[1]][0] y2 = self.mesh_nodes[node_ids[1]][1] x3 = self.mesh_nodes[node_ids[2]][0] y3 = self.mesh_nodes[node_ids[2]][1] # create a list containing the vertex coordinates coords = np.array([[x1, x2, x3], [y1, y2, y3]]) # add tri elements to the mesh self.elements.append( Tri3( coords=coords, node_ids=node_ids, material=self.material, ) )
[docs] def get_elastic_stress( self, n: float, m_x: float, m_y: float, e_a: float, cx: float, cy: float, e_ixx: float, e_iyy: float, e_ixy: float, ) -> Tuple[np.ndarray, float, float, float]: r"""Given section actions and section propreties, calculates elastic stresses. :param n: Axial force :param m_x: Bending moment about the x-axis :param m_y: Bending moment about the y-axis :param e_a: Axial rigidity :param cx: x-Centroid :param cy: y-Centroid :param e_ixx: Flexural rigidity about the x-axis :param e_iyy: Flexural rigidity about the y-axis :param e_ixy: Flexural rigidity about the xy-axis :return: Elastic stresses, net force and distance from neutral axis to point of force action """ # intialise stress results sig = np.zeros(len(self.mesh_nodes)) # loop through nodes for idx, node in enumerate(self.mesh_nodes): x = node[0] - cx y = node[1] - cy # axial stress sig[idx] += n * self.material.elastic_modulus / e_a # bending moment sig[idx] += self.material.elastic_modulus * ( -(e_ixy * m_x) / (e_ixx * e_iyy - e_ixy**2) * x + (e_iyy * m_x) / (e_ixx * e_iyy - e_ixy**2) * y ) sig[idx] += self.material.elastic_modulus * ( +(e_ixx * m_y) / (e_ixx * e_iyy - e_ixy**2) * x - (e_ixy * m_y) / (e_ixx * e_iyy - e_ixy**2) * y ) # initialise section actions n_sec = 0 m_x_sec = 0 m_y_sec = 0 for el in self.elements: el_n, el_m_x, el_m_y = el.calculate_elastic_actions( n=n, m_x=m_x, m_y=m_y, e_a=e_a, cx=cx, cy=cy, e_ixx=e_ixx, e_iyy=e_iyy, e_ixy=e_ixy, ) n_sec += el_n m_x_sec += el_m_x m_y_sec += el_m_y # calculate point of action if n_sec == 0: d_x = 0 d_y = 0 else: d_x = m_y_sec / n_sec d_y = m_x_sec / n_sec return sig, n_sec, d_x, d_y
[docs] def service_analysis( self, point_na: Tuple[float, float], theta: float, kappa: float, centroid: Tuple[float, float], ) -> Tuple[float, float, float, float, float]: r"""Performs a service stress analysis on the section. :param point_na: Point on the neutral axis :param d_n: Depth of the neutral axis from the extreme compression fibre :param theta: Angle (in radians) the neutral axis makes with the horizontal axis (:math:`-\pi \leq \theta \leq \pi`) :param kappa: Curvature :param centroid: Centroid about which to take moments :return: Axial force, section moments and min/max strain """ # initialise section actions n_sec = 0 m_x_sec = 0 m_y_sec = 0 min_strain = 0 max_strain = 0 for el in self.elements: ( el_n, el_m_x, el_m_y, el_min_strain, el_max_strain, ) = el.calculate_service_actions( point_na=point_na, theta=theta, kappa=kappa, centroid=centroid, ) min_strain = min(min_strain, el_min_strain) max_strain = max(max_strain, el_max_strain) n_sec += el_n m_x_sec += el_m_x m_y_sec += el_m_y return n_sec, m_x_sec, m_y_sec, min_strain, max_strain
[docs] def get_service_stress( self, d_n: float, kappa: float, point_na: Tuple[float, float], theta: float, centroid: Tuple[float, float], ) -> Tuple[np.ndarray, float, float, float]: r"""Given the neutral axis depth `d_n` and curvature `kappa` determines the service stresses within the section. :param d_n: Neutral axis depth :param kappa: Curvature :param point_na: Point on the neutral axis :param theta: Angle (in radians) the neutral axis makes with the horizontal axis (:math:`-\pi \leq \theta \leq \pi`) :param centroid: Centroid about which to take moments :return: Service stresses, net force and distance from centroid to point of force action """ # intialise stress results sig = np.zeros(len(self.mesh_nodes)) # loop through nodes and calculate stress at nodes for idx, node in enumerate(self.mesh_nodes): # get strain at node strain = utils.get_service_strain( point=(node[0], node[1]), point_na=point_na, theta=theta, kappa=kappa, ) # get stress at gauss point sig[idx] = self.material.stress_strain_profile.get_stress(strain=strain) # calculate total force n_sec, m_x_sec, m_y_sec, _, _ = self.service_analysis( point_na=point_na, theta=theta, kappa=kappa, centroid=centroid, ) # calculate point of action if n_sec == 0: d_x = 0 d_y = 0 else: d_x = m_y_sec / n_sec d_y = m_x_sec / n_sec return sig, n_sec, d_x, d_y
[docs] def ultimate_analysis( self, point_na: Tuple[float, float], d_n: float, theta: float, ultimate_strain: float, centroid: Tuple[float, float], ) -> Tuple[float, float, float]: r"""Performs an ultimate stress analysis on the section. :param point_na: Point on the neutral axis :param d_n: Depth of the neutral axis from the extreme compression fibre :param theta: Angle (in radians) the neutral axis makes with the horizontal axis (:math:`-\pi \leq \theta \leq \pi`) :param ultimate_strain: Concrete strain at failure :param centroid: Centroid about which to take moments :return: Axial force and resultant moments about the global axes """ # initialise section actions n_sec = 0 m_x_sec = 0 m_y_sec = 0 for el in self.elements: el_n, el_m_x, el_m_y = el.calculate_ultimate_actions( point_na=point_na, d_n=d_n, theta=theta, ultimate_strain=ultimate_strain, centroid=centroid, ) n_sec += el_n m_x_sec += el_m_x m_y_sec += el_m_y return n_sec, m_x_sec, m_y_sec
[docs] def get_ultimate_stress( self, d_n: float, point_na: Tuple[float, float], theta: float, ultimate_strain: float, centroid: Tuple[float, float], ) -> Tuple[np.ndarray, float, float, float]: r"""Given the neutral axis depth `d_n` and ultimate strain, determines the ultimate stresses with the section. :param d_n: Neutral axis depth :param point_na: Point on the neutral axis :param theta: Angle (in radians) the neutral axis makes with the horizontal axis (:math:`-\pi \leq \theta \leq \pi`) :param ultimate_strain: Concrete strain at failure :param centroid: Centroid about which to take moments :return: Ultimate stresses net force and distance from neutral axis to point of force action """ # intialise stress results sig = np.zeros(len(self.mesh_nodes)) # loop through nodes for idx, node in enumerate(self.mesh_nodes): # get strain at node if isinf(d_n): strain = ultimate_strain else: strain = utils.get_ultimate_strain( point=(node[0], node[1]), point_na=point_na, d_n=d_n, theta=theta, ultimate_strain=ultimate_strain, ) # get stress at gauss point if isinstance(self.material, Concrete): sig[idx] = self.material.ultimate_stress_strain_profile.get_stress( strain=strain ) else: sig[idx] = self.material.stress_strain_profile.get_stress(strain=strain) # calculate total force n_sec, m_x_sec, m_y_sec = self.ultimate_analysis( point_na=point_na, d_n=d_n, theta=theta, ultimate_strain=ultimate_strain, centroid=centroid, ) # calculate point of action if n_sec == 0: d_x = 0 d_y = 0 else: d_x = m_y_sec / n_sec d_y = m_x_sec / n_sec return sig, n_sec, d_x, d_y
[docs] def plot_mesh( self, alpha: float = 0.5, title: str = "Finite Element Mesh", **kwargs, ) -> matplotlib.axes.Axes: # type: ignore """Plots the finite element mesh. :param alpha: Transparency of the mesh outlines :param title: Plot title :param kwargs: Passed to :func:`~concreteproperties.post.plotting_context` :return: Matplotlib axes object """ with plotting_context(title=title, aspect=True, **kwargs) as (fig, ax): colour_array = [] c = [] # Indices of elements for mapping colours # create an array of finite element colours for idx, el in enumerate(self.elements): colour_array.append(el.material.colour) c.append(idx) cmap = ListedColormap(colour_array) # custom colourmap # plot the mesh colours ax.tripcolor( # type: ignore self.mesh_nodes[:, 0], self.mesh_nodes[:, 1], self.mesh_elements[:, 0:3], # type: ignore c, cmap=cmap, ) # plot the mesh ax.triplot( # type: ignore self.mesh_nodes[:, 0], self.mesh_nodes[:, 1], self.mesh_elements[:, 0:3], # type: ignore lw=0.5, color="black", alpha=alpha, ) return ax
[docs] def plot_shape( self, ax: matplotlib.axes.Axes, # type: ignore ): """Plots the coloured shape of the mesh with no outlines on `ax`. :param ax: Matplotlib axes object """ colour_array = [] c = [] # Indices of elements for mapping colours # create an array of finite element colours for idx, el in enumerate(self.elements): colour_array.append(el.material.colour) c.append(idx) cmap = ListedColormap(colour_array) # custom colourmap # plot the mesh colours ax.tripcolor( self.mesh_nodes[:, 0], self.mesh_nodes[:, 1], self.mesh_elements[:, 0:3], # type: ignore c, cmap=cmap, )
[docs]@dataclass class Tri3: """Class for a three noded linear triangular element. :param coords: A 2 x 3 array of the coordinates of the tri-3 nodes :param node_ids: A list of the global node ids for the current element :param material: Material object for the current finite element """ coords: np.ndarray node_ids: List[int] material: Material
[docs] def second_moments_of_area( self, ) -> Tuple[float, float, float]: """Calculates the second moments of area for the current finite element. :return: Modulus weighted second moments of area *(e_ixx, e_iyy, e_ixy)* """ # initialise properties e_ixx = 0 e_iyy = 0 e_ixy = 0 # get points for 3 point Gaussian integration gps = utils.gauss_points(n=3) # loop through each gauss point for gp in gps: # determine shape function and jacobian N, j = utils.shape_function(coords=self.coords, gauss_point=gp) e_ixx += ( self.material.elastic_modulus * gp[0] * np.dot(N, np.transpose(self.coords[1, :])) ** 2 * j ) e_iyy += ( self.material.elastic_modulus * gp[0] * np.dot(N, np.transpose(self.coords[0, :])) ** 2 * j ) e_ixy += ( self.material.elastic_modulus * gp[0] * np.dot(N, np.transpose(self.coords[1, :])) * np.dot(N, np.transpose(self.coords[0, :])) * j ) return e_ixx, e_iyy, e_ixy
[docs] def calculate_elastic_actions( self, n: float, m_x: float, m_y: float, e_a: float, cx: float, cy: float, e_ixx: float, e_iyy: float, e_ixy: float, ) -> Tuple[float, float, float]: """Calculates elastic actions for the current finite element. :param n: Axial force :param m_x: Bending moment about the x-axis :param m_y: Bending moment about the y-axis :param e_a: Axial rigidity :param cx: x-Centroid :param cy: y-Centroid :param e_ixx: Flexural rigidity about the x-axis :param e_iyy: Flexural rigidity about the y-axis :param e_ixy: Flexural rigidity about the xy-axis :return: Elastic force and resultant moments """ # initialise element results force_e = 0 m_x_e = 0 m_y_e = 0 # get points for 3 point Gaussian integration gps = utils.gauss_points(n=3) # loop through each gauss point for gp in gps: # determine shape function and jacobian N, j = utils.shape_function(coords=self.coords, gauss_point=gp) # get coordinates (wrt NA) of the gauss point x = np.dot(N, np.transpose(self.coords[0, :])) - cx y = np.dot(N, np.transpose(self.coords[1, :])) - cy # axial force force_gp = 0 force_gp += gp[0] * n * self.material.elastic_modulus / e_a * j # bending moment force_gp += ( gp[0] * self.material.elastic_modulus * ( -(e_ixy * m_x) / (e_ixx * e_iyy - e_ixy**2) * x + (e_iyy * m_x) / (e_ixx * e_iyy - e_ixy**2) * y ) * j ) force_gp += ( gp[0] * self.material.elastic_modulus * ( +(e_ixx * m_y) / (e_ixx * e_iyy - e_ixy**2) * x - (e_ixy * m_y) / (e_ixx * e_iyy - e_ixy**2) * y ) * j ) # add force and moment force_e += force_gp m_x_e += force_gp * y m_y_e += force_gp * x return force_e, m_x_e, m_y_e
[docs] def calculate_service_actions( self, point_na: Tuple[float, float], theta: float, kappa: float, centroid: Tuple[float, float], ) -> Tuple[float, float, float, float, float]: r"""Calculates service actions for the current finite element. :param point_na: Point on the neutral axis :param theta: Angle (in radians) the neutral axis makes with the horizontal axis (:math:`-\pi \leq \theta \leq \pi`) :param kappa: Curvature :param centroid: Centroid about which to take moments :return: Axial force, moments and min/max strain """ # initialise element results force_e = 0 m_x_e = 0 m_y_e = 0 min_strain_e = 0 max_strain_e = 0 # get points for 1 point Gaussian integration gps = utils.gauss_points(n=1) # loop through each gauss point for gp in gps: # determine shape function and jacobian N, j = utils.shape_function(coords=self.coords, gauss_point=gp) # get coordinates of the gauss point x = np.dot(N, np.transpose(self.coords[0, :])) y = np.dot(N, np.transpose(self.coords[1, :])) # get strain at gauss point strain = utils.get_service_strain( point=(x, y), point_na=point_na, theta=theta, kappa=kappa, ) min_strain_e = min(min_strain_e, strain) max_strain_e = max(max_strain_e, strain) # get stress at gauss point stress = self.material.stress_strain_profile.get_stress(strain=strain) # calculate force (stress * area) force_gp = gp[0] * stress * j # add force and moment force_e += force_gp m_x_e += force_e * (y - centroid[1]) m_y_e += force_e * (x - centroid[0]) return force_e, m_x_e, m_y_e, min_strain_e, max_strain_e
[docs] def calculate_ultimate_actions( self, point_na: Tuple[float, float], d_n: float, theta: float, ultimate_strain: float, centroid: Tuple[float, float], ) -> Tuple[float, float, float]: r"""Calculates ultimate actions for the current finite element. :param point_na: Point on the neutral axis :param d_n: Depth of the neutral axis from the extreme compression fibre :param theta: Angle (in radians) the neutral axis makes with the horizontal axis (:math:`-\pi \leq \theta \leq \pi`) :param ultimate_strain: Concrete strain at failure :param centroid: Centroid about which to take moments :return: Axial force and resultant moments about the global axes """ # initialise element results force_e = 0 m_x_e = 0 m_y_e = 0 # get points for 1 point Gaussian integration gps = utils.gauss_points(n=1) # loop through each gauss point for gp in gps: # determine shape function and jacobian N, j = utils.shape_function(coords=self.coords, gauss_point=gp) # get coordinates of the gauss point x = np.dot(N, np.transpose(self.coords[0, :])) y = np.dot(N, np.transpose(self.coords[1, :])) # get strain at gauss point if isinf(d_n): strain = ultimate_strain else: strain = utils.get_ultimate_strain( point=(x, y), point_na=point_na, d_n=d_n, theta=theta, ultimate_strain=ultimate_strain, ) # get stress at gauss point if isinstance(self.material, Concrete): stress = self.material.ultimate_stress_strain_profile.get_stress( strain=strain ) else: stress = self.material.stress_strain_profile.get_stress(strain=strain) # calculate force (stress * area) force_gp = gp[0] * stress * j # add force and moment force_e += force_gp m_x_e += force_gp * (y - centroid[1]) m_y_e += force_gp * (x - centroid[0]) return force_e, m_x_e, m_y_e