Source code for concreteproperties.utils

from __future__ import annotations

from typing import TYPE_CHECKING, List, Optional, Tuple, Union

import numpy as np
from rich.progress import BarColumn, Progress, ProgressColumn, SpinnerColumn, TextColumn
from rich.table import Column
from rich.text import Text

from concreteproperties.pre import CPGeomConcrete

if TYPE_CHECKING:
    from sectionproperties.pre.geometry import CompoundGeometry

    from concreteproperties.pre import CPGeom


[docs]def get_service_strain( point: Tuple[float, float], point_na: Tuple[float, float], theta: float, kappa: float, ) -> float: r"""Determines the strain at point `point` given curvature `kappa` and neutral axis angle `theta`. Positive strain is compression. :param point: Point at which to evaluate the strain :param point_na: Point on the neutral axis :param theta: Angle (in radians) the neutral axis makes with the horizontal axis (:math:`-\pi \leq \theta \leq \pi`) :param kappa: Curvature :return: Strain """ # convert point to local coordinates _, v = global_to_local(theta=theta, x=point[0], y=point[1]) # convert point_na to local coordinates _, v_na = global_to_local(theta=theta, x=point_na[0], y=point_na[1]) # calculate distance between NA and point in `v` direction d = v - v_na return kappa * d
[docs]def get_ultimate_strain( point: Tuple[float, float], point_na: Tuple[float, float], d_n: float, theta: float, ultimate_strain: float, ) -> float: r"""Determines the strain at point `point` given neutral axis depth `d_n` and neutral axis angle `theta`. Positive strain is compression. :param point: Point at which to evaluate the strain :param point_na: Point on the neutral axis :param d_n: Depth of the neutral axis from the extreme compression fibre :param theta: Angle (in radians) the neutral axis makes with the horizontal axis (:math:`-\pi \leq \theta \leq \pi`) :param ultimate_strain: Concrete strain at failure :return: Strain """ # convert point to local coordinates _, v = global_to_local(theta=theta, x=point[0], y=point[1]) # convert point_na to local coordinates _, v_na = global_to_local(theta=theta, x=point_na[0], y=point_na[1]) # calculate distance between NA and point in `v` direction d = v - v_na return d / d_n * ultimate_strain
[docs]def point_on_neutral_axis( extreme_fibre: Tuple[float, float], d_n: float, theta: float, ) -> Tuple[float, float]: r"""Returns a point on the neutral axis given an extreme fibre, a depth to the neutral axis and a neutral axis angle. :param extreme_fibre: Global coordinate of the extreme compression fibre :param d_n: Depth of the neutral axis from the extreme compression fibre :param theta: Angle (in radians) the neutral axis makes with the horizontal axis (:math:`-\pi \leq \theta \leq \pi`) :return: Point on the neutral axis in global coordinates `(x, y)` """ # determine the coordinate of the point wrt the local axis u, v = global_to_local(theta=theta, x=extreme_fibre[0], y=extreme_fibre[1]) # subtract the neutral axis depth v -= d_n # convert point back to global coordinates return local_to_global(theta=theta, u=u, v=v)
[docs]def split_geom_at_strains( geom: Union[CPGeom, CPGeomConcrete], theta: float, point_na: Tuple[float, float], ultimate: bool, ultimate_strain: Optional[float] = None, d_n: Optional[float] = None, kappa: Optional[float] = None, ) -> Union[List[CPGeom], List[CPGeomConcrete]]: r"""Splits geometries at discontinuities in its stress-strain profile. :param geom: Geometry to split :param theta: Angle (in radians) the neutral axis makes with the horizontal axis (:math:`-\pi \leq \theta \leq \pi`) :param point_na: Point on the neutral axis :param ultimate: If set to True, uses ultimate stress-strain profile for concrete geometries :param ultimate_strain: Concrete strain at failure (required for ``ultimate=True`` only) :param d_n: Depth of the neutral axis from the extreme compression fibre (required for ``ultimate=True`` only) :param kappa: Curvature :return: List of split geometries """ # handle zero curvature if kappa == 0: return [geom] # create splits in concrete geometries at points in stress-strain profiles split_geoms: Union[List[CPGeom], List[CPGeomConcrete]] = [] if ultimate and isinstance(geom, CPGeomConcrete): strains = geom.material.ultimate_stress_strain_profile.get_unique_strains() else: strains = geom.material.stress_strain_profile.get_unique_strains() # make geom a list of geometries geom_list = [geom] # initialise top_geoms in case of two unique strains top_geoms = geom_list continuing_geoms = [] # loop through intermediate points on stress-strain profile for strain in strains[1:-1]: # depth to points of *strain* from NA # ultimate case if ultimate and ultimate_strain and d_n: d = strain / ultimate_strain * d_n # service case elif kappa: d = strain / kappa else: raise ValueError("Not enough arguments provided.") # convert depth to global coordinates dx, dy = local_to_global(theta=theta, u=0, v=d) # calculate location of point pt = point_na[0] + dx, point_na[1] + dy # make list of geometries that will need to continue to be split after the # split operation, i.e. those above the split continuing_geoms = [] # split concrete geometries (from bottom up) for g in geom_list: top_geoms, bot_geoms = g.split_section( point=pt, theta=theta, ) # save bottom geoms split_geoms.extend(bot_geoms) # save continuing geoms continuing_geoms.extend(top_geoms) # update geom_list for next strain geom_list = continuing_geoms # save final top geoms split_geoms.extend(continuing_geoms) return split_geoms
[docs]def calculate_extreme_fibre( points: List[Tuple[float, float]], theta: float, ) -> Tuple[Tuple[float, float], float]: r"""Calculates the locations of the extreme compression fibre in global coordinates given a neutral axis angle `theta`. :param points: Points over which to search for an extreme fibre :param theta: Angle (in radians) the neutral axis makes with the horizontal axis (:math:`-\pi \leq \theta \leq \pi`) :return: Global coordinate of the extreme compression fibre `(x, y)` and the neutral axis depth at the extreme tensile fibre """ # initialise min/max variable & point max_pt = points[0] _, v = global_to_local(theta=theta, x=points[0][0], y=points[0][1]) v_min = v v_max = v # loop through all points for idx, point in enumerate(points[1:]): # determine the coordinate of the point wrt the local axis _, v = global_to_local(theta=theta, x=point[0], y=point[1]) # update the min/max & point where necessary if v < v_min: v_min = v if v > v_max: v_max = v max_pt = point # calculate depth of neutral axis at tensile fibre d_t = v_max - v_min return max_pt, d_t
[docs]def calculate_max_bending_depth( points: List[Tuple[float, float]], c_local_v: float, theta: float, ) -> float: r"""Calculates the maximum distance from the centroid to an extreme fibre when bending about an axis `theta`. :param points: Points over which to search for a bending depth :param c_local_v: Centroid coordinate in the local v-direction :param theta: Angle (in radians) the bending axis makes with the horizontal axis (:math:`-\pi \leq \theta \leq \pi`) :return: Maximum bending depth """ max_bending_depth = 0 # loop through all points for idx, point in enumerate(points): # determine the coordinate of the point wrt the local axis _, v = global_to_local(theta=theta, x=point[0], y=point[1]) max_bending_depth = max(c_local_v - v, max_bending_depth) return max_bending_depth
[docs]def gauss_points( n: float, ) -> List[List[float]]: """Returns the Gaussian weights and locations for *n* point Gaussian integration of a linear triangular element. :param n: Number of Gauss points (1, 3 or 6) :return: An *n x 3* matrix consisting of the integration weight and the xi and eta locations for *n* Gauss points """ if n == 1: return [[0.5, 1.0 / 3, 1.0 / 3]] elif n == 3: return [ [1.0 / 6, 0, 0.5], [1.0 / 6, 0.5, 0], [1.0 / 6, 0.5, 0.5], ] else: raise ValueError(f"{n} gauss points not implemented.")
[docs]def shape_function( coords: np.ndarray, gauss_point: List[float], ) -> Tuple[np.ndarray, float]: """Computes shape functions and the determinant of the Jacobian matrix for a linear triangular element at a given Gauss point. :param coords: Global coordinates of the linear triangle vertices [2 x 3] :param gauss_point: Gaussian weight and isoparametric location of the Gauss point :return: The value of the shape functions *N(i)* at the given Gauss point [1 x 3] and the determinant of the Jacobian matrix *j* """ xi = gauss_point[1] eta = gauss_point[2] N = np.array([1 - xi - eta, xi, eta]) dN = np.array([[-1, -1], [1, 0], [0, 1]]) # calculate jacobian J_mat = np.matmul(coords, dN) j = np.linalg.det(J_mat) return N, j
[docs]def calculate_local_extents( geometry: CompoundGeometry, cx: float, cy: float, theta: float, ) -> Tuple[float, float, float, float]: r"""Calculates the local extents of a geometry given a centroid and axis angle. :param geometry: Geometry over which to calculate extents :param cx: x-location of the centroid :param cy: y-location of the centroid :param theta: Angle (in radians) the neutral axis makes with the horizontal axis (:math:`-\pi \leq \theta \leq \pi`) :return: Local extents *(x11_max, x11_min, y22_max, y22_min)* """ # initialise min, max variables pt0 = geometry.points[0] x11, y22 = global_to_local(theta=theta, x=pt0[0] - cx, y=pt0[1] - cy) x11_max = x11 x11_min = x11 y22_max = y22 y22_min = y22 # loop through all points in geometry for idx, pt in enumerate(geometry.points[1:]): # determine the coordinate of the point wrt the principal axis x11, y22 = global_to_local(theta=theta, x=pt[0] - cx, y=pt[1] - cy) # update the mins and maxes where necessary x11_max = max(x11_max, x11) x11_min = min(x11_min, x11) y22_max = max(y22_max, y22) y22_min = min(y22_min, y22) return x11_max, x11_min, y22_max, y22_min
[docs]def global_to_local( theta: float, x: float, y: float, ) -> Tuple[float, float]: r"""Determines the local coordinates of the global point (``x``, ``y``) given local axis angle ``theta``. :param theta: Angle (in radians) the local axis makes with the horizontal axis (:math:`-\pi \leq \theta \leq \pi`) :param x: x-coordinate of the point in the global axis :param y: y-coordinate of the point in the global axis :return: Local axis coordinates (``u``, ``v``) """ cos_theta = np.cos(theta) sin_theta = np.sin(theta) return x * cos_theta + y * sin_theta, y * cos_theta - x * sin_theta
[docs]def local_to_global( theta: float, u: float, v: float, ) -> Tuple[float, float]: r"""Determines the global coordinates of the local point (``u``, ``v``) given local axis angle ``theta``. :param theta: Angle (in radians) the local axis makes with the horizontal axis (:math:`-\pi \leq \theta \leq \pi`) :param u: u-coordinate of the point in the local axis :param v: v-coordinate of the point in the local axis :return: Global axis coordinates (``x``, ``y``) """ cos_theta = np.cos(theta) sin_theta = np.sin(theta) return u * cos_theta - v * sin_theta, u * sin_theta + v * cos_theta
[docs]class CustomTimeElapsedColumn(ProgressColumn): """Renders time elapsed in milliseconds."""
[docs] def render( self, task: str = "Task", ) -> Text: """Show time remaining. :param task: Task string :return: Rich text object """ elapsed = task.finished_time if task.finished else task.elapsed # type: ignore if elapsed is None: return Text("-:--:--", style="progress.elapsed") elapsed_string = "[ {0:.4f} s ]".format(elapsed) return Text(elapsed_string, style="progress.elapsed")
[docs]def create_known_progress() -> Progress: """Returns a Rich Progress class for a known number of iterations. :return: Rich progress object """ return Progress( SpinnerColumn(), TextColumn( "[progress.description]{task.description}", table_column=Column(ratio=1) ), BarColumn(bar_width=None, table_column=Column(ratio=1)), TextColumn("[progress.percentage]{task.percentage:>3.0f}%"), CustomTimeElapsedColumn(), expand=True, )
[docs]def create_unknown_progress() -> Progress: """Returns a Rich Progress class for an unknown number of iterations. :return: Rich progress object """ return Progress( SpinnerColumn(), TextColumn( "[progress.description]{task.description}", table_column=Column(ratio=1) ), BarColumn(bar_width=None, table_column=Column(ratio=1)), CustomTimeElapsedColumn(), expand=True, )