from __future__ import annotations
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
import numpy as np
from rich.progress import BarColumn, Progress, ProgressColumn, SpinnerColumn, TextColumn
from rich.table import Column
from rich.text import Text
from concreteproperties.pre import CPGeomConcrete
if TYPE_CHECKING:
from sectionproperties.pre.geometry import CompoundGeometry
from concreteproperties.pre import CPGeom
[docs]def get_service_strain(
point: Tuple[float, float],
point_na: Tuple[float, float],
theta: float,
kappa: float,
) -> float:
r"""Determines the strain at point `point` given curvature `kappa` and neutral axis
angle `theta`. Positive strain is compression.
:param point: Point at which to evaluate the strain
:param point_na: Point on the neutral axis
:param theta: Angle (in radians) the neutral axis makes with the horizontal
axis (:math:`-\pi \leq \theta \leq \pi`)
:param kappa: Curvature
:return: Strain
"""
# convert point to local coordinates
_, v = global_to_local(theta=theta, x=point[0], y=point[1])
# convert point_na to local coordinates
_, v_na = global_to_local(theta=theta, x=point_na[0], y=point_na[1])
# calculate distance between NA and point in `v` direction
d = v - v_na
return kappa * d
[docs]def get_ultimate_strain(
point: Tuple[float, float],
point_na: Tuple[float, float],
d_n: float,
theta: float,
ultimate_strain: float,
) -> float:
r"""Determines the strain at point `point` given neutral axis depth `d_n` and
neutral axis angle `theta`. Positive strain is compression.
:param point: Point at which to evaluate the strain
:param point_na: Point on the neutral axis
:param d_n: Depth of the neutral axis from the extreme compression fibre
:param theta: Angle (in radians) the neutral axis makes with the horizontal
axis (:math:`-\pi \leq \theta \leq \pi`)
:param ultimate_strain: Concrete strain at failure
:return: Strain
"""
# convert point to local coordinates
_, v = global_to_local(theta=theta, x=point[0], y=point[1])
# convert point_na to local coordinates
_, v_na = global_to_local(theta=theta, x=point_na[0], y=point_na[1])
# calculate distance between NA and point in `v` direction
d = v - v_na
return d / d_n * ultimate_strain
[docs]def point_on_neutral_axis(
extreme_fibre: Tuple[float, float],
d_n: float,
theta: float,
) -> Tuple[float, float]:
r"""Returns a point on the neutral axis given an extreme fibre, a depth to the
neutral axis and a neutral axis angle.
:param extreme_fibre: Global coordinate of the extreme compression fibre
:param d_n: Depth of the neutral axis from the extreme compression fibre
:param theta: Angle (in radians) the neutral axis makes with the horizontal
axis (:math:`-\pi \leq \theta \leq \pi`)
:return: Point on the neutral axis in global coordinates `(x, y)`
"""
# determine the coordinate of the point wrt the local axis
u, v = global_to_local(theta=theta, x=extreme_fibre[0], y=extreme_fibre[1])
# subtract the neutral axis depth
v -= d_n
# convert point back to global coordinates
return local_to_global(theta=theta, u=u, v=v)
[docs]def split_geom_at_strains(
geom: Union[CPGeom, CPGeomConcrete],
theta: float,
point_na: Tuple[float, float],
ultimate: bool,
ultimate_strain: Optional[float] = None,
d_n: Optional[float] = None,
kappa: Optional[float] = None,
) -> Union[List[CPGeom], List[CPGeomConcrete]]:
r"""Splits geometries at discontinuities in its stress-strain profile.
:param geom: Geometry to split
:param theta: Angle (in radians) the neutral axis makes with the horizontal
axis (:math:`-\pi \leq \theta \leq \pi`)
:param point_na: Point on the neutral axis
:param ultimate: If set to True, uses ultimate stress-strain profile for concrete
geometries
:param ultimate_strain: Concrete strain at failure (required for ``ultimate=True``
only)
:param d_n: Depth of the neutral axis from the extreme compression fibre (required
for ``ultimate=True`` only)
:param kappa: Curvature
:return: List of split geometries
"""
# handle zero curvature
if kappa == 0:
return [geom]
# create splits in concrete geometries at points in stress-strain profiles
split_geoms: Union[List[CPGeom], List[CPGeomConcrete]] = []
if ultimate and isinstance(geom, CPGeomConcrete):
strains = geom.material.ultimate_stress_strain_profile.get_unique_strains()
else:
strains = geom.material.stress_strain_profile.get_unique_strains()
# make geom a list of geometries
geom_list = [geom]
# initialise top_geoms in case of two unique strains
top_geoms = geom_list
continuing_geoms = []
# loop through intermediate points on stress-strain profile
for strain in strains[1:-1]:
# depth to points of *strain* from NA
# ultimate case
if ultimate and ultimate_strain and d_n:
d = strain / ultimate_strain * d_n
# service case
elif kappa:
d = strain / kappa
else:
raise ValueError("Not enough arguments provided.")
# convert depth to global coordinates
dx, dy = local_to_global(theta=theta, u=0, v=d)
# calculate location of point
pt = point_na[0] + dx, point_na[1] + dy
# make list of geometries that will need to continue to be split after the
# split operation, i.e. those above the split
continuing_geoms = []
# split concrete geometries (from bottom up)
for g in geom_list:
top_geoms, bot_geoms = g.split_section(
point=pt,
theta=theta,
)
# save bottom geoms
split_geoms.extend(bot_geoms)
# save continuing geoms
continuing_geoms.extend(top_geoms)
# update geom_list for next strain
geom_list = continuing_geoms
# save final top geoms
split_geoms.extend(continuing_geoms)
return split_geoms
[docs]def calculate_extreme_fibre(
points: List[Tuple[float, float]],
theta: float,
) -> Tuple[Tuple[float, float], float]:
r"""Calculates the locations of the extreme compression fibre in global
coordinates given a neutral axis angle `theta`.
:param points: Points over which to search for an extreme fibre
:param theta: Angle (in radians) the neutral axis makes with the horizontal
axis (:math:`-\pi \leq \theta \leq \pi`)
:return: Global coordinate of the extreme compression fibre `(x, y)` and the
neutral axis depth at the extreme tensile fibre
"""
# initialise min/max variable & point
max_pt = points[0]
_, v = global_to_local(theta=theta, x=points[0][0], y=points[0][1])
v_min = v
v_max = v
# loop through all points
for idx, point in enumerate(points[1:]):
# determine the coordinate of the point wrt the local axis
_, v = global_to_local(theta=theta, x=point[0], y=point[1])
# update the min/max & point where necessary
if v < v_min:
v_min = v
if v > v_max:
v_max = v
max_pt = point
# calculate depth of neutral axis at tensile fibre
d_t = v_max - v_min
return max_pt, d_t
[docs]def calculate_max_bending_depth(
points: List[Tuple[float, float]],
c_local_v: float,
theta: float,
) -> float:
r"""Calculates the maximum distance from the centroid to an extreme fibre when
bending about an axis `theta`.
:param points: Points over which to search for a bending depth
:param c_local_v: Centroid coordinate in the local v-direction
:param theta: Angle (in radians) the bending axis makes with the horizontal
axis (:math:`-\pi \leq \theta \leq \pi`)
:return: Maximum bending depth
"""
max_bending_depth = 0
# loop through all points
for idx, point in enumerate(points):
# determine the coordinate of the point wrt the local axis
_, v = global_to_local(theta=theta, x=point[0], y=point[1])
max_bending_depth = max(c_local_v - v, max_bending_depth)
return max_bending_depth
[docs]def gauss_points(
n: float,
) -> List[List[float]]:
"""Returns the Gaussian weights and locations for *n* point Gaussian integration of
a linear triangular element.
:param n: Number of Gauss points (1, 3 or 6)
:return: An *n x 3* matrix consisting of the integration weight and the xi and eta
locations for *n* Gauss points
"""
if n == 1:
return [[0.5, 1.0 / 3, 1.0 / 3]]
elif n == 3:
return [
[1.0 / 6, 0, 0.5],
[1.0 / 6, 0.5, 0],
[1.0 / 6, 0.5, 0.5],
]
else:
raise ValueError(f"{n} gauss points not implemented.")
[docs]def shape_function(
coords: np.ndarray,
gauss_point: List[float],
) -> Tuple[np.ndarray, float]:
"""Computes shape functions and the determinant of the Jacobian matrix for a
linear triangular element at a given Gauss point.
:param coords: Global coordinates of the linear triangle vertices [2 x 3]
:param gauss_point: Gaussian weight and isoparametric location of the Gauss point
:return: The value of the shape functions *N(i)* at the given Gauss point [1 x 3]
and the determinant of the Jacobian matrix *j*
"""
xi = gauss_point[1]
eta = gauss_point[2]
N = np.array([1 - xi - eta, xi, eta])
dN = np.array([[-1, -1], [1, 0], [0, 1]])
# calculate jacobian
J_mat = np.matmul(coords, dN)
j = np.linalg.det(J_mat)
return N, j
[docs]def calculate_local_extents(
geometry: CompoundGeometry,
cx: float,
cy: float,
theta: float,
) -> Tuple[float, float, float, float]:
r"""Calculates the local extents of a geometry given a centroid and axis angle.
:param geometry: Geometry over which to calculate extents
:param cx: x-location of the centroid
:param cy: y-location of the centroid
:param theta: Angle (in radians) the neutral axis makes with the horizontal
axis (:math:`-\pi \leq \theta \leq \pi`)
:return: Local extents *(x11_max, x11_min, y22_max, y22_min)*
"""
# initialise min, max variables
pt0 = geometry.points[0]
x11, y22 = global_to_local(theta=theta, x=pt0[0] - cx, y=pt0[1] - cy)
x11_max = x11
x11_min = x11
y22_max = y22
y22_min = y22
# loop through all points in geometry
for idx, pt in enumerate(geometry.points[1:]):
# determine the coordinate of the point wrt the principal axis
x11, y22 = global_to_local(theta=theta, x=pt[0] - cx, y=pt[1] - cy)
# update the mins and maxes where necessary
x11_max = max(x11_max, x11)
x11_min = min(x11_min, x11)
y22_max = max(y22_max, y22)
y22_min = min(y22_min, y22)
return x11_max, x11_min, y22_max, y22_min
[docs]def global_to_local(
theta: float,
x: float,
y: float,
) -> Tuple[float, float]:
r"""Determines the local coordinates of the global point (``x``, ``y``) given local
axis angle ``theta``.
:param theta: Angle (in radians) the local axis makes with the horizontal axis
(:math:`-\pi \leq \theta \leq \pi`)
:param x: x-coordinate of the point in the global axis
:param y: y-coordinate of the point in the global axis
:return: Local axis coordinates (``u``, ``v``)
"""
cos_theta = np.cos(theta)
sin_theta = np.sin(theta)
return x * cos_theta + y * sin_theta, y * cos_theta - x * sin_theta
[docs]def local_to_global(
theta: float,
u: float,
v: float,
) -> Tuple[float, float]:
r"""Determines the global coordinates of the local point (``u``, ``v``) given local
axis angle ``theta``.
:param theta: Angle (in radians) the local axis makes with the horizontal axis
(:math:`-\pi \leq \theta \leq \pi`)
:param u: u-coordinate of the point in the local axis
:param v: v-coordinate of the point in the local axis
:return: Global axis coordinates (``x``, ``y``)
"""
cos_theta = np.cos(theta)
sin_theta = np.sin(theta)
return u * cos_theta - v * sin_theta, u * sin_theta + v * cos_theta
[docs]class CustomTimeElapsedColumn(ProgressColumn):
"""Renders time elapsed in milliseconds."""
[docs] def render(
self,
task: str = "Task",
) -> Text:
"""Show time remaining.
:param task: Task string
:return: Rich text object
"""
elapsed = task.finished_time if task.finished else task.elapsed # type: ignore
if elapsed is None:
return Text("-:--:--", style="progress.elapsed")
elapsed_string = "[ {0:.4f} s ]".format(elapsed)
return Text(elapsed_string, style="progress.elapsed")
[docs]def create_known_progress() -> Progress:
"""Returns a Rich Progress class for a known number of iterations.
:return: Rich progress object
"""
return Progress(
SpinnerColumn(),
TextColumn(
"[progress.description]{task.description}", table_column=Column(ratio=1)
),
BarColumn(bar_width=None, table_column=Column(ratio=1)),
TextColumn("[progress.percentage]{task.percentage:>3.0f}%"),
CustomTimeElapsedColumn(),
expand=True,
)
[docs]def create_unknown_progress() -> Progress:
"""Returns a Rich Progress class for an unknown number of iterations.
:return: Rich progress object
"""
return Progress(
SpinnerColumn(),
TextColumn(
"[progress.description]{task.description}", table_column=Column(ratio=1)
),
BarColumn(bar_width=None, table_column=Column(ratio=1)),
CustomTimeElapsedColumn(),
expand=True,
)