from __future__ import annotations
import warnings
from math import inf, isinf, nan
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
import matplotlib.patches as mpatches
import numpy as np
import sectionproperties.pre.geometry as sp_geom
from rich.live import Live
from scipy.interpolate import interp1d
from scipy.optimize import brentq
import concreteproperties.results as res
import concreteproperties.utils as utils
from concreteproperties.analysis_section import AnalysisSection
from concreteproperties.material import Concrete
from concreteproperties.post import plotting_context
from concreteproperties.pre import CPGeom, CPGeomConcrete
if TYPE_CHECKING:
import matplotlib
[docs]class ConcreteSection:
"""Class for a reinforced concrete section."""
def __init__(
self,
geometry: sp_geom.CompoundGeometry,
moment_centroid: Optional[Tuple[float, float]] = None,
geometric_centroid_override: bool = False,
):
"""Inits the ConcreteSection class.
:param geometry: *sectionproperties* CompoundGeometry object describing the
reinforced concrete section
:param moment_centroid: If specified, all moments for service and ultimate
analyses are calculated about this point. If not specified, all moments are
calculated about the gross cross-section centroid, i.e. no material
properties applied.
:param geometric_centroid_override: If set to True, sets ``moment_centroid`` to
the geometric centroid i.e. material properties applied (useful for
composite section analysis)
"""
self.compound_geometry = geometry
# check overlapping regions
polygons = [sec_geom.geom for sec_geom in self.compound_geometry.geoms]
overlapped_regions = sp_geom.check_geometry_overlaps(polygons)
if overlapped_regions:
warnings.warn(
"The provided geometry contains overlapping regions, results may be incorrect."
)
# sort into concrete and reinforcement (meshed and lumped) geometries
self.all_geometries: List[Union[CPGeomConcrete, CPGeom]] = []
self.meshed_geometries: List[Union[CPGeomConcrete, CPGeom]] = []
self.concrete_geometries: List[CPGeomConcrete] = []
self.reinf_geometries_meshed: List[CPGeom] = []
self.reinf_geometries_lumped: List[CPGeom] = []
# sort geometry into appropriate list
for geom in self.compound_geometry.geoms:
if isinstance(geom.material, Concrete):
cp_geom = CPGeomConcrete(geom=geom.geom, material=geom.material)
self.concrete_geometries.append(cp_geom)
self.meshed_geometries.append(cp_geom)
else:
cp_geom = CPGeom(geom=geom.geom, material=geom.material) # type: ignore
if cp_geom.material.meshed:
self.reinf_geometries_meshed.append(cp_geom)
self.meshed_geometries.append(cp_geom)
elif not cp_geom.material.meshed:
self.reinf_geometries_lumped.append(cp_geom)
self.all_geometries.append(cp_geom)
# initialise gross properties results class
self.gross_properties = res.GrossProperties()
# calculate gross area properties
self.calculate_gross_area_properties()
# set moment centroid
if moment_centroid:
self.moment_centroid = moment_centroid
else:
self.moment_centroid = (
self.gross_properties.cx_gross,
self.gross_properties.cy_gross,
)
# if moment centroid overriden
if geometric_centroid_override:
self.moment_centroid = self.gross_properties.cx, self.gross_properties.cy
[docs] def calculate_gross_area_properties(
self,
):
"""Calculates and stores gross section area properties."""
# loop through all geometries
for geom in self.all_geometries:
# area and centroid of geometry
area = geom.calculate_area()
centroid = geom.calculate_centroid()
self.gross_properties.total_area += area
self.gross_properties.e_a += area * geom.material.elastic_modulus
self.gross_properties.mass += area * geom.material.density
self.gross_properties.e_qx += (
area * geom.material.elastic_modulus * centroid[1]
)
self.gross_properties.e_qy += (
area * geom.material.elastic_modulus * centroid[0]
)
self.gross_properties.qx_gross += area * centroid[1]
self.gross_properties.qy_gross += area * centroid[0]
# sum concrete areas
for conc_geom in self.concrete_geometries:
self.gross_properties.concrete_area += conc_geom.calculate_area()
# sum reinforcement meshed areas
for meshed_geom in self.reinf_geometries_meshed:
self.gross_properties.reinf_meshed_area += meshed_geom.calculate_area()
# sum reinforcement lumped areas
for lumped_geom in self.reinf_geometries_lumped:
self.gross_properties.reinf_lumped_area += lumped_geom.calculate_area()
# perimeter
self.gross_properties.perimeter = self.compound_geometry.calculate_perimeter()
# centroids
self.gross_properties.cx = (
self.gross_properties.e_qy / self.gross_properties.e_a
)
self.gross_properties.cy = (
self.gross_properties.e_qx / self.gross_properties.e_a
)
self.gross_properties.cx_gross = (
self.gross_properties.qy_gross / self.gross_properties.total_area
)
self.gross_properties.cy_gross = (
self.gross_properties.qx_gross / self.gross_properties.total_area
)
# global second moments of area
# meshed geometries
for geom in self.meshed_geometries:
sec = AnalysisSection(geometry=geom)
for el in sec.elements:
el_e_ixx_g, el_e_iyy_g, el_e_ixy_g = el.second_moments_of_area()
self.gross_properties.e_ixx_g += el_e_ixx_g
self.gross_properties.e_iyy_g += el_e_iyy_g
self.gross_properties.e_ixy_g += el_e_ixy_g
# lumped geometries - treat as lumped circles
for geom in self.reinf_geometries_lumped:
# area, diameter and centroid of geometry
area = geom.calculate_area()
diam = np.sqrt(4 * area / np.pi)
centroid = geom.calculate_centroid()
self.gross_properties.e_ixx_g += geom.material.elastic_modulus * (
np.pi * pow(diam, 4) / 64 + area * centroid[1] * centroid[1]
)
self.gross_properties.e_iyy_g += geom.material.elastic_modulus * (
np.pi * pow(diam, 4) / 64 + area * centroid[0] * centroid[0]
)
self.gross_properties.e_ixy_g += geom.material.elastic_modulus * (
area * centroid[0] * centroid[1]
)
# centroidal second moments of area
self.gross_properties.e_ixx_c = (
self.gross_properties.e_ixx_g
- self.gross_properties.e_qx**2 / self.gross_properties.e_a
)
self.gross_properties.e_iyy_c = (
self.gross_properties.e_iyy_g
- self.gross_properties.e_qy**2 / self.gross_properties.e_a
)
self.gross_properties.e_ixy_c = (
self.gross_properties.e_ixy_g
- self.gross_properties.e_qx
* self.gross_properties.e_qy
/ self.gross_properties.e_a
)
# principal 2nd moments of area about the centroidal xy axis
Delta = (
((self.gross_properties.e_ixx_c - self.gross_properties.e_iyy_c) / 2) ** 2
+ self.gross_properties.e_ixy_c**2
) ** 0.5
self.gross_properties.e_i11 = (
self.gross_properties.e_ixx_c + self.gross_properties.e_iyy_c
) / 2 + Delta
self.gross_properties.e_i22 = (
self.gross_properties.e_ixx_c + self.gross_properties.e_iyy_c
) / 2 - Delta
# principal axis angle
if (
abs(self.gross_properties.e_ixx_c - self.gross_properties.e_i11)
< 1e-12 * self.gross_properties.e_i11
):
self.gross_properties.phi = 0
else:
self.gross_properties.phi = np.arctan2(
self.gross_properties.e_ixx_c - self.gross_properties.e_i11,
self.gross_properties.e_ixy_c,
)
# centroidal section moduli
x_min, x_max, y_min, y_max = self.compound_geometry.calculate_extents()
self.gross_properties.e_zxx_plus = self.gross_properties.e_ixx_c / abs(
y_max - self.gross_properties.cy
)
self.gross_properties.e_zxx_minus = self.gross_properties.e_ixx_c / abs(
y_min - self.gross_properties.cy
)
self.gross_properties.e_zyy_plus = self.gross_properties.e_iyy_c / abs(
x_max - self.gross_properties.cx
)
self.gross_properties.e_zyy_minus = self.gross_properties.e_iyy_c / abs(
x_min - self.gross_properties.cx
)
# principal section moduli
x11_max, x11_min, y22_max, y22_min = utils.calculate_local_extents(
geometry=self.compound_geometry,
cx=self.gross_properties.cx,
cy=self.gross_properties.cy,
theta=self.gross_properties.phi,
)
# evaluate principal section moduli
self.gross_properties.e_z11_plus = self.gross_properties.e_i11 / abs(y22_max)
self.gross_properties.e_z11_minus = self.gross_properties.e_i11 / abs(y22_min)
self.gross_properties.e_z22_plus = self.gross_properties.e_i22 / abs(x11_max)
self.gross_properties.e_z22_minus = self.gross_properties.e_i22 / abs(x11_min)
# store ultimate concrete strain (get smallest from all concrete geometries)
conc_ult_strain = 0
for idx, conc_geom in enumerate(self.concrete_geometries):
ult_strain = (
conc_geom.material.ultimate_stress_strain_profile.get_ultimate_compressive_strain()
)
if idx == 0:
conc_ult_strain = ult_strain
else:
conc_ult_strain = min(conc_ult_strain, ult_strain)
self.gross_properties.conc_ultimate_strain = conc_ult_strain
[docs] def get_gross_properties(
self,
) -> res.GrossProperties:
"""Returns the gross section properties of the reinforced concrete section.
:return: Gross concrete properties object
"""
return self.gross_properties
[docs] def calculate_cracked_properties(
self,
theta: float = 0,
) -> res.CrackedResults:
r"""Calculates cracked section properties given a neutral axis angle ``theta``.
:param theta: Angle (in radians) the neutral axis makes with the horizontal axis
(:math:`-\pi \leq \theta \leq \pi`)
:return: Cracked results object
"""
cracked_results = res.CrackedResults(theta=theta)
cracked_results.m_cr = self.calculate_cracking_moment(theta=theta)
# set neutral axis depth limits
# depth of neutral axis at extreme tensile fibre
_, d_t = utils.calculate_extreme_fibre(
points=self.compound_geometry.points, theta=theta
)
a = 1e-6 * d_t # sufficiently small depth of compressive zone
b = d_t # neutral axis at extreme tensile fibre
# find neutral axis that gives convergence of the the cracked neutral axis
try:
(cracked_results.d_nc, r) = brentq(
f=self.cracked_neutral_axis_convergence,
a=a,
b=b,
args=(cracked_results),
xtol=1e-3,
rtol=1e-6, # type: ignore
full_output=True,
disp=False,
)
except ValueError:
msg = "Analysis failed. Please raise an issue at "
msg += "https://github.com/robbievanleeuwen/concrete-properties/issues"
raise utils.AnalysisError(msg)
# calculate cracked section properties
# axial rigidity & first moments of area
for geom in cracked_results.cracked_geometries:
area = geom.calculate_area()
centroid = geom.calculate_centroid()
cracked_results.e_a_cr += area * geom.material.elastic_modulus
cracked_results.e_qx_cr += (
area * geom.material.elastic_modulus * centroid[1]
)
cracked_results.e_qy_cr += (
area * geom.material.elastic_modulus * centroid[0]
)
# centroids
cracked_results.cx = cracked_results.e_qy_cr / cracked_results.e_a_cr
cracked_results.cy = cracked_results.e_qx_cr / cracked_results.e_a_cr
# global second moments of area
for geom in cracked_results.cracked_geometries:
# if meshed
if geom.material.meshed:
sec = AnalysisSection(geometry=geom)
for el in sec.elements:
el_e_ixx_g, el_e_iyy_g, el_e_ixy_g = el.second_moments_of_area()
cracked_results.e_ixx_g_cr += el_e_ixx_g
cracked_results.e_iyy_g_cr += el_e_iyy_g
cracked_results.e_ixy_g_cr += el_e_ixy_g
# if lumped
else:
# area, diameter and centroid of geometry
area = geom.calculate_area()
diam = np.sqrt(4 * area / np.pi)
centroid = geom.calculate_centroid()
cracked_results.e_ixx_g_cr += geom.material.elastic_modulus * (
np.pi * pow(diam, 4) / 64 + area * centroid[1] * centroid[1]
)
cracked_results.e_iyy_g_cr += geom.material.elastic_modulus * (
np.pi * pow(diam, 4) / 64 + area * centroid[0] * centroid[0]
)
cracked_results.e_ixy_g_cr += geom.material.elastic_modulus * (
area * centroid[0] * centroid[1]
)
# centroidal second moments of area
cracked_results.e_ixx_c_cr = (
cracked_results.e_ixx_g_cr
- cracked_results.e_qx_cr**2 / cracked_results.e_a_cr
)
cracked_results.e_iyy_c_cr = (
cracked_results.e_iyy_g_cr
- cracked_results.e_qy_cr**2 / cracked_results.e_a_cr
)
cracked_results.e_ixy_c_cr = (
cracked_results.e_ixy_g_cr
- cracked_results.e_qx_cr * cracked_results.e_qy_cr / cracked_results.e_a_cr
)
cracked_results.e_iuu_cr = (
cracked_results.e_iyy_c_cr * (np.sin(theta)) ** 2
+ cracked_results.e_ixx_c_cr * (np.cos(theta)) ** 2
- 2 * cracked_results.e_ixy_c_cr * np.sin(theta) * np.cos(theta)
)
# principal 2nd moments of area about the centroidal xy axis
Delta = (
((cracked_results.e_ixx_c_cr - cracked_results.e_iyy_c_cr) / 2) ** 2
+ cracked_results.e_ixy_c_cr**2
) ** 0.5
cracked_results.e_i11_cr = (
cracked_results.e_ixx_c_cr + cracked_results.e_iyy_c_cr
) / 2 + Delta
cracked_results.e_i22_cr = (
cracked_results.e_ixx_c_cr + cracked_results.e_iyy_c_cr
) / 2 - Delta
# principal axis angle
if (
abs(cracked_results.e_ixx_c_cr - cracked_results.e_i11_cr)
< 1e-12 * cracked_results.e_i11_cr
):
cracked_results.phi_cr = 0
else:
cracked_results.phi_cr = np.arctan2(
cracked_results.e_ixx_c_cr - cracked_results.e_i11_cr,
cracked_results.e_ixy_c_cr,
)
return cracked_results
[docs] def calculate_cracking_moment(
self,
theta: float,
) -> float:
r"""Calculates the cracking moment given a bending angle ``theta``.
:param theta: Angle (in radians) the neutral axis makes with the
horizontal axis (:math:`-\pi \leq \theta \leq \pi`)
:return: Cracking moment
"""
# get centroidal second moments of area
e_ixx = self.gross_properties.e_ixx_c
e_iyy = self.gross_properties.e_iyy_c
e_ixy = self.gross_properties.e_ixy_c
# determine rotated second moment of area
e_iuu = (
e_iyy * (np.sin(theta)) ** 2
+ e_ixx * (np.cos(theta)) ** 2
- 2 * e_ixy * np.sin(theta) * np.cos(theta)
)
# loop through all concrete geometries to find lowest cracking moment
m_c = 0
for idx, conc_geom in enumerate(self.concrete_geometries):
# get distance from centroid to extreme tensile fibre
d = utils.calculate_max_bending_depth(
points=conc_geom.points,
c_local_v=utils.global_to_local(
theta=theta, x=self.gross_properties.cx, y=self.gross_properties.cy
)[1],
theta=theta,
)
# if no part of the section is in tension, go to next geometry
if d == 0:
continue
# cracking moment for this geometry
f_t = conc_geom.material.flexural_tensile_strength
m_c_geom = (f_t / conc_geom.material.elastic_modulus) * (e_iuu / d)
# if we are the first geometry, initialise cracking moment
if idx == 0:
m_c = m_c_geom
# otherwise take smaller cracking moment
else:
m_c = min(m_c, m_c_geom)
return m_c
[docs] def cracked_neutral_axis_convergence(
self,
d_nc: float,
cracked_results: res.CrackedResults,
) -> float:
"""Given a trial cracked neutral axis depth ``d_nc``, determines the difference
between the first moments of area above and below the trial axis.
:param d_nc: Trial cracked neutral axis
:param cracked_results: Cracked results object
:return: Cracked neutral axis convergence
"""
# calculate extreme fibre in global coordinates
extreme_fibre, d_t = utils.calculate_extreme_fibre(
points=self.compound_geometry.points, theta=cracked_results.theta
)
# validate d_nc input
if d_nc <= 0:
raise ValueError("d_nc must be positive.")
elif d_nc > d_t:
raise ValueError("d_nc must lie within the section, i.e. d_nc <= d_t")
# find point on neutral axis by shifting by d_nc
point_na = utils.point_on_neutral_axis(
extreme_fibre=extreme_fibre, d_n=d_nc, theta=cracked_results.theta
)
# get principal coordinates of neutral axis
na_local = utils.global_to_local(
theta=cracked_results.theta, x=point_na[0], y=point_na[1]
)
# split concrete geometries above and below d_nc, discard below
cracked_geoms: List[Union[CPGeomConcrete, CPGeom]] = []
for conc_geom in self.concrete_geometries:
top_geoms, _ = conc_geom.split_section(
point=point_na,
theta=cracked_results.theta,
)
# save compression geometries
cracked_geoms.extend(top_geoms)
# add reinforcement geometries to list
cracked_geoms.extend(self.reinf_geometries_meshed)
cracked_geoms.extend(self.reinf_geometries_lumped)
# determine moment of area equilibrium about neutral axis
e_qu = 0 # initialise first moment of area
for geom in cracked_geoms:
ea = geom.calculate_area() * geom.material.elastic_modulus
centroid = geom.calculate_centroid()
# convert centroid to local coordinates
_, c_v = utils.global_to_local(
theta=cracked_results.theta, x=centroid[0], y=centroid[1]
)
# calculate first moment of area
e_qu += ea * (c_v - na_local[1])
cracked_results.cracked_geometries = cracked_geoms
return e_qu
[docs] def moment_curvature_analysis(
self,
theta: float = 0,
kappa_inc: float = 1e-7,
kappa_mult: float = 2,
kappa_inc_max: float = 5e-6,
delta_m_min: float = 0.15,
delta_m_max: float = 0.3,
progress_bar: bool = True,
) -> res.MomentCurvatureResults:
r"""Performs a moment curvature analysis given a bending angle ``theta``.
Analysis continues until a material reaches its ultimate strain.
:param theta: Angle (in radians) the neutral axis makes with the horizontal axis
(:math:`-\pi \leq \theta \leq \pi`)
:param kappa_inc: Initial curvature increment
:param kappa_mult: Multiplier to apply to the curvature increment ``kappa_inc``
when ``delta_m_max`` is satisfied. When ``delta_m_min`` is satisfied, the
inverse of this multipler is applied to ``kappa_inc``.
:param kappa_inc_max: Maximum curvature increment
:param delta_m_min: Relative change in moment at which to reduce the curvature
increment
:param delta_m_max: Relative change in moment at which to increase the curvature
increment
:param progress_bar: If set to True, displays the progress bar
:return: Moment curvature results object
"""
# initialise variables
moment_curvature = res.MomentCurvatureResults(theta=theta)
# set neutral axis depth limits
# depth of neutral axis at extreme tensile fibre
_, d_t = utils.calculate_extreme_fibre(
points=self.compound_geometry.points, theta=theta
)
a = 1e-6 * d_t # sufficiently small depth of compressive zone
b = d_t # neutral axis at extreme tensile fibre
# function that performs moment curvature analysis
def mcurve(kappa_inc=kappa_inc, progress=None):
iter = 0
kappa = 0
while not moment_curvature._failure:
# calculate adaptive step size for curvature
if iter > 2:
moment_diff = (
abs(moment_curvature.kappa[-1] - moment_curvature.kappa[-2])
/ moment_curvature.kappa[-1]
)
if moment_diff <= delta_m_min:
kappa_inc *= kappa_mult
elif moment_diff >= delta_m_max:
kappa_inc *= 1 / kappa_mult
# enforce maximum curvature increment
if kappa_inc > kappa_inc_max:
kappa_inc = kappa_inc_max
# update curvature
kappa = 0 if iter == 0 else moment_curvature.kappa[-1] + kappa_inc
# find neutral axis that gives convergence of the axial force
try:
(d_n, r) = brentq(
f=self.service_normal_force_convergence,
a=a,
b=b,
args=(kappa, moment_curvature),
xtol=1e-3,
rtol=1e-6, # type: ignore
full_output=True,
disp=False,
)
except ValueError:
if not moment_curvature._failure:
msg = "Analysis failed. Please raise an issue at "
msg += "https://github.com/robbievanleeuwen/concrete-properties/issues"
raise utils.AnalysisError(msg)
m_xy = np.sqrt(
moment_curvature._m_x_i**2 + moment_curvature._m_y_i**2
)
if progress:
text_update = "[red]Generating M-K diagram: "
text_update += f"M={m_xy:.3e}"
progress.update(task, description=text_update)
# save results
if not moment_curvature._failure:
moment_curvature.kappa.append(kappa)
moment_curvature.n.append(moment_curvature._n_i)
moment_curvature.m_x.append(moment_curvature._m_x_i)
moment_curvature.m_y.append(moment_curvature._m_y_i)
moment_curvature.m_xy.append(m_xy)
moment_curvature.convergence.append(
moment_curvature._failure_convergence
)
iter += 1
# find kappa corresponding to failure strain:
# curvature before and after failure
kappa_a = moment_curvature.kappa[-1]
kappa_b = kappa
# this method (given a kappa) outputs the failure convergence
# (normalised to zero)
def failure_kappa(kappa_fail):
# given kappa find equilibrium
brentq(
f=self.service_normal_force_convergence,
a=a,
b=b,
args=(kappa_fail, moment_curvature),
xtol=1e-3,
rtol=1e-6, # type: ignore
full_output=True,
disp=False,
)
return moment_curvature._failure_convergence - 1
if progress:
progress.update(task, description="[red]Finding failure curvature...")
# find curvature corresponding to failure
brentq(
f=failure_kappa,
a=kappa_a,
b=kappa_b,
full_output=True,
disp=False,
)
# save final results
m_xy = np.sqrt(moment_curvature._m_x_i**2 + moment_curvature._m_y_i**2)
moment_curvature.kappa.append(moment_curvature._kappa)
moment_curvature.n.append(moment_curvature._n_i)
moment_curvature.m_x.append(moment_curvature._m_x_i)
moment_curvature.m_y.append(moment_curvature._m_y_i)
moment_curvature.m_xy.append(m_xy)
moment_curvature.convergence.append(moment_curvature._failure_convergence)
# create progress bar
if progress_bar:
# create progress bar
progress = utils.create_unknown_progress()
with Live(progress, refresh_per_second=10) as live:
task = progress.add_task(
description="[red]Generating M-K diagram",
total=None,
)
mcurve(progress=progress)
progress.update(
task,
description="[bold green]:white_check_mark: M-K diagram generated",
)
live.refresh()
else:
mcurve()
return moment_curvature
[docs] def service_normal_force_convergence(
self,
d_n: float,
kappa: float,
moment_curvature: res.MomentCurvatureResults,
) -> float:
"""Given a neutral axis depth ``d_n`` and curvature ``kappa``, returns the the
net axial force.
:param d_n: Trial neutral axis
:param kappa: Curvature
:param moment_curvature: Moment curvature results object
:return: Net axial force
"""
# reset failure
moment_curvature._failure = False
# calculate extreme fibre in global coordinates
extreme_fibre, d_t = utils.calculate_extreme_fibre(
points=self.compound_geometry.points, theta=moment_curvature.theta
)
# validate d_n input
if d_n <= 0:
raise ValueError("d_n must be positive.")
elif d_n > d_t:
raise ValueError("d_n must lie within the section, i.e. d_n <= d_t")
# find point on neutral axis by shifting by d_n
point_na = utils.point_on_neutral_axis(
extreme_fibre=extreme_fibre, d_n=d_n, theta=moment_curvature.theta
)
# create splits in meshed geometries at points in stress-strain profiles
meshed_split_geoms: List[Union[CPGeom, CPGeomConcrete]] = []
for meshed_geom in self.meshed_geometries:
split_geoms = utils.split_geom_at_strains(
geom=meshed_geom,
theta=moment_curvature.theta,
point_na=point_na,
ultimate=False,
kappa=kappa,
)
meshed_split_geoms.extend(split_geoms)
# initialise results
n = 0
m_x = 0
m_y = 0
failure_convergence = 0
# calculate meshed geometry actions
for meshed_geom in meshed_split_geoms:
sec = AnalysisSection(geometry=meshed_geom)
n_sec, m_x_sec, m_y_sec, min_strain, max_strain = sec.service_analysis(
point_na=point_na,
theta=moment_curvature.theta,
kappa=kappa,
centroid=self.moment_centroid,
)
n += n_sec
m_x += m_x_sec
m_y += m_y_sec
# check for failure
ult_comp_strain = (
meshed_geom.material.stress_strain_profile.get_ultimate_compressive_strain()
)
ult_tens_strain = (
meshed_geom.material.stress_strain_profile.get_ultimate_tensile_strain()
)
# don't worry about tension failure in concrete
if max_strain > ult_comp_strain or (
min_strain < ult_tens_strain
and not isinstance(meshed_geom, CPGeomConcrete)
):
moment_curvature._failure = True
moment_curvature.failure_geometry = meshed_geom
# update failure convergence
# compression failure
failure_convergence = max(max_strain / ult_comp_strain, failure_convergence)
# tensile failure (ignore concrete)
if not isinstance(meshed_geom, CPGeomConcrete):
failure_convergence = max(
min_strain / ult_tens_strain, failure_convergence
)
# calculate lumped geometry actions
for lumped_geom in self.reinf_geometries_lumped:
# calculate area and centroid
area = lumped_geom.calculate_area()
centroid = lumped_geom.calculate_centroid()
# get strain at centroid of lump
strain = utils.get_service_strain(
point=(centroid[0], centroid[1]),
point_na=point_na,
theta=moment_curvature.theta,
kappa=kappa,
)
# check for failure
ult_comp_strain = (
lumped_geom.material.stress_strain_profile.get_ultimate_compressive_strain()
)
ult_tens_strain = (
lumped_geom.material.stress_strain_profile.get_ultimate_tensile_strain()
)
if strain > ult_comp_strain or strain < ult_tens_strain:
moment_curvature._failure = True
moment_curvature.failure_geometry = lumped_geom
# update failure convergence
# compression failure
failure_convergence = max(strain / ult_comp_strain, failure_convergence)
# tensile failure
failure_convergence = max(strain / ult_tens_strain, failure_convergence)
# calculate stress and force
stress = lumped_geom.material.stress_strain_profile.get_stress(
strain=strain
)
force = stress * area
n += force
# calculate moment
m_x += force * (centroid[1] - self.moment_centroid[1])
m_y += force * (centroid[0] - self.moment_centroid[0])
moment_curvature._kappa = kappa
moment_curvature._n_i = n
moment_curvature._m_x_i = m_x
moment_curvature._m_y_i = m_y
moment_curvature._failure_convergence = failure_convergence
# return normal force convergence
return n
[docs] def ultimate_bending_capacity(
self,
theta: float = 0,
n: float = 0,
) -> res.UltimateBendingResults:
r"""Given a neutral axis angle ``theta`` and an axial force ``n``, calculates
the ultimate bending capacity.
Note that ``k_u`` is calculated only for lumped (non-meshed) geometries.
:param theta: Angle (in radians) the neutral axis makes with the horizontal axis
(:math:`-\pi \leq \theta \leq \pi`)
:param n: Net axial force
:return: Ultimate bending results object
"""
# set neutral axis depth limits
# depth of neutral axis at extreme tensile fibre
_, d_t = utils.calculate_extreme_fibre(
points=self.compound_geometry.points, theta=theta
)
a = 1e-6 * d_t # sufficiently small depth of compressive zone
b = 6 * d_t # neutral axis at sufficiently large tensile fibre
# initialise ultimate bending results
ultimate_results = res.UltimateBendingResults(theta=theta)
# find neutral axis that gives convergence of the axial force
try:
(d_n, r) = brentq(
f=self.ultimate_normal_force_convergence,
a=a,
b=b,
args=(n, ultimate_results),
xtol=1e-3,
rtol=1e-6, # type: ignore
full_output=True,
disp=False,
)
except ValueError:
msg = "Analysis failed. The solver could not find a neutral axis that "
msg += "satisfies equilibrium. This may be due to an axial force that "
msg += "exceeds the tensile or compressive capacity of the cross-section."
raise utils.AnalysisError(msg)
return ultimate_results
[docs] def ultimate_normal_force_convergence(
self,
d_n: float,
n: float,
ultimate_results: res.UltimateBendingResults,
) -> float:
"""Given a neutral axis depth ``d_n`` and neutral axis angle ``theta``,
calculates the difference between the target net axial force ``n`` and the
calculated axial force.
:param d_n: Depth of the neutral axis from the extreme compression fibre
:param n: Net axial force
:param ultimate_results: Ultimate bending results object
:return: Axial force convergence
"""
# calculate convergence
return (
n
- self.calculate_ultimate_section_actions(
d_n=d_n, ultimate_results=ultimate_results
).n
)
[docs] def calculate_ultimate_section_actions(
self,
d_n: float,
ultimate_results: Optional[res.UltimateBendingResults] = None,
) -> res.UltimateBendingResults:
"""Given a neutral axis depth ``d_n`` and neutral axis angle ``theta``,
calculates the resultant bending moments ``m_x``, ``m_y``, ``m_xy`` and the net
axial force ``n``.
:param d_n: Depth of the neutral axis from the extreme compression fibre
:param ultimate_results: Ultimate bending results object
:return: Ultimate bending results object
"""
if ultimate_results is None:
ultimate_results = res.UltimateBendingResults(theta=0)
# calculate extreme fibre in global coordinates
extreme_fibre, _ = utils.calculate_extreme_fibre(
points=self.compound_geometry.points, theta=ultimate_results.theta
)
# extreme fibre in local coordinates
_, ef_v = utils.global_to_local(
theta=ultimate_results.theta,
x=extreme_fibre[0],
y=extreme_fibre[1],
)
# validate d_n input
if d_n <= 0:
raise ValueError("d_n must be positive.")
# find point on neutral axis by shifting by d_n
if isinf(d_n):
point_na = (0, 0)
else:
point_na = utils.point_on_neutral_axis(
extreme_fibre=extreme_fibre, d_n=d_n, theta=ultimate_results.theta
)
# create splits in meshed geometries at points in stress-strain profiles
meshed_split_geoms: List[Union[CPGeom, CPGeomConcrete]] = []
if isinf(d_n):
meshed_split_geoms = self.meshed_geometries
else:
for meshed_geom in self.meshed_geometries:
split_geoms = utils.split_geom_at_strains(
geom=meshed_geom,
theta=ultimate_results.theta,
point_na=point_na,
ultimate=True,
ultimate_strain=self.gross_properties.conc_ultimate_strain,
d_n=d_n,
)
meshed_split_geoms.extend(split_geoms)
# initialise results
n = 0
m_x = 0
m_y = 0
k_u = []
# calculate meshed geometry actions
for meshed_geom in meshed_split_geoms:
sec = AnalysisSection(geometry=meshed_geom)
n_sec, m_x_sec, m_y_sec = sec.ultimate_analysis(
point_na=point_na,
d_n=d_n,
theta=ultimate_results.theta,
ultimate_strain=self.gross_properties.conc_ultimate_strain,
centroid=self.moment_centroid,
)
n += n_sec
m_x += m_x_sec
m_y += m_y_sec
# calculate lumped actions
for lumped_geom in self.reinf_geometries_lumped:
# calculate area and centroid
area = lumped_geom.calculate_area()
centroid = lumped_geom.calculate_centroid()
# get strain at centroid of lump
if isinf(d_n):
strain = self.gross_properties.conc_ultimate_strain
else:
strain = utils.get_ultimate_strain(
point=(centroid[0], centroid[1]),
point_na=point_na,
d_n=d_n,
theta=ultimate_results.theta,
ultimate_strain=self.gross_properties.conc_ultimate_strain,
)
# calculate stress and force
stress = lumped_geom.material.stress_strain_profile.get_stress(
strain=strain
)
force = stress * area
n += force
# convert centroid to local coordinates
_, c_v = utils.global_to_local(
theta=ultimate_results.theta, x=centroid[0], y=centroid[1]
)
# calculate moment
m_x += force * (centroid[1] - self.moment_centroid[1])
m_y += force * (centroid[0] - self.moment_centroid[0])
# calculate k_u
d = ef_v - c_v
k_u.append(d_n / d)
# calculate resultant moment
m_xy = np.sqrt(m_x * m_x + m_y * m_y)
# save results
ultimate_results.d_n = d_n
ultimate_results.n = n
ultimate_results.m_x = m_x
ultimate_results.m_y = m_y
ultimate_results.m_xy = m_xy
if k_u:
ultimate_results.k_u = min(k_u)
return ultimate_results
[docs] def moment_interaction_diagram(
self,
theta: float = 0,
limits: List[Tuple[str, float]] = [
("D", 1.0),
("d_n", 1e-6),
],
control_points: List[Tuple[str, float]] = [
("kappa0", 0.0),
("fy", 1.0),
("N", 0.0),
],
labels: Optional[List[str]] = None,
n_points: int = 24,
n_spacing: Optional[int] = None,
max_comp: Optional[float] = None,
max_comp_labels: Optional[List[str]] = None,
progress_bar: bool = True,
) -> res.MomentInteractionResults:
r"""Generates a moment interaction diagram given a neutral axis angle ``theta``.
``limits`` and ``control_points`` accept a list of tuples that define points on
the moment interaction diagram. The first item in the tuple defines the type of
control points, while the second item defines the location of the control point.
Types of control points are detailed below:
.. admonition:: Control points
- ``"D"`` - ratio of neutral axis depth to section depth
- ``"d_n"`` - neutral axis depth
- ``"fy"`` - yield ratio of the most extreme tensile bar
- ``"N"`` - axial force
- ``"kappa0"`` - zero curvature compression (N.B second item in tuple is not
used)
:param theta: Angle (in radians) the neutral axis makes with the horizontal axis
(:math:`-\pi \leq \theta \leq \pi`)
:param limits: List of control points that define the start and end of the
interaction diagram. List length must equal two. The default limits range
from concrete decompression strain to zero curvature tension.
:param control_points: List of additional control points to add to the moment
interatction diagram. The default control points include the pure
compression point (``kappa0``), the balanced point (``fy=1``) and the pure
bending point (``N=0``). Control points may lie outside the limits of the
moment interaction diagram as long as equilibrium can be found.
:param labels: List of labels to apply to the ``limits`` and ``control_points``
for plotting purposes. The first two values in ``labels`` apply labels to
the ``limits``, the remaining values apply labels to the ``control_points``.
If a single value is provided, this value will be applied to both ``limits``
and all ``control_points``. The length of ``labels`` must equal ``1`` or
``2 + len(control_points)``.
:param n_points: Number of points to compute including and between the
``limits`` of the moment interaction diagram. Generates equally spaced
neutral axis depths between the ``limits``.
:param n_spacing: If provided, overrides ``n_points`` and generates the moment
interaction diagram using ``n_spacing`` equally spaced axial loads. Note
that using ``n_spacing`` negatively affects performance, as the neutral axis
depth must first be located for each point on the moment interaction
diagram.
:param max_comp: If provided, limits the maximum compressive force in the moment
interaction diagram to ``max_comp``
:param max_comp_labels: Labels to apply to the ``max_comp`` intersection points,
first value is at zero moment, second value is at the intersection with the
interaction diagram
:param progress_bar: If set to True, displays the progress bar
:return: Moment interaction results object
"""
# compute extreme tensile fibre
_, d_t = utils.calculate_extreme_fibre(
points=self.compound_geometry.points, theta=theta
)
# validate limits length
if len(limits) != 2:
raise ValueError("Length of limits must equal 2.")
# get neutral axis depths for limits
limits_dn = []
for cp in limits:
limits_dn.append(self.decode_d_n(theta=theta, cp=cp, d_t=d_t))
# get neutral axis depths for additional control points
add_cp_dn = []
for cp in control_points:
add_cp_dn.append(self.decode_d_n(theta=theta, cp=cp, d_t=d_t))
# validate labels length
if labels and len(labels) != 1 and len(labels) != 2 + len(control_points):
raise ValueError(
"Length of labels must be 1 or 2 + number of control points"
)
# if one label is provided, generate a list
if labels and len(labels) == 1:
labels = labels * (len(control_points) + 2)
# initialise results
mi_results = res.MomentInteractionResults()
# generate list of neutral axis depths/axial forces to analyse
# if we are spacing by axial force
if n_spacing:
# get axial force of the limits
start_res = self.calculate_ultimate_section_actions(
d_n=limits_dn[0],
ultimate_results=res.UltimateBendingResults(theta=theta),
)
end_res = self.calculate_ultimate_section_actions(
d_n=limits_dn[1],
ultimate_results=res.UltimateBendingResults(theta=theta),
)
# generate list of axial forces
analysis_list = np.linspace(
start=start_res.n, stop=end_res.n, num=n_spacing, dtype=float
).tolist()
else:
# check for infinity in limits - this will not work with linspace
# for sake of distributing neutral axes let kappa0 ~= 2 * D
if limits_dn[0] == inf:
start = 2 * d_t
else:
start = limits_dn[0]
if limits_dn[1] == inf:
stop = 2 * d_t
else:
stop = limits_dn[1]
# generate list of neutral axes
analysis_list = np.linspace(
start=start, stop=stop, num=n_points, dtype=float
).tolist()
# function that performs moment interaction analysis
def micurve(progress=None):
# loop through all analysis points
for idx, analysis_point in enumerate(analysis_list):
# calculate ultimate results:
# if we have axial forces
if n_spacing:
# limits should be calculated based on neutral axis values
if idx == 0:
ult_res = self.calculate_ultimate_section_actions(
d_n=limits_dn[0],
ultimate_results=res.UltimateBendingResults(theta=theta),
)
elif idx == len(analysis_list) - 1:
ult_res = self.calculate_ultimate_section_actions(
d_n=limits_dn[1],
ultimate_results=res.UltimateBendingResults(theta=theta),
)
else:
ult_res = self.ultimate_bending_capacity(
theta=theta, n=analysis_point
)
# if we have neutral axes
else:
ult_res = self.calculate_ultimate_section_actions(
d_n=analysis_point,
ultimate_results=res.UltimateBendingResults(theta=theta),
)
# add labels for limits
if labels:
if idx == 0:
ult_res.label = labels[0]
elif idx == len(analysis_list) - 1:
ult_res.label = labels[1]
# add ultimate result to moment interactions results
mi_results.results.append(ult_res)
# update progress
if progress:
progress.update(task, advance=1)
# add control points
for idx, d_n in enumerate(add_cp_dn):
ult_res = self.calculate_ultimate_section_actions(
d_n=d_n,
ultimate_results=res.UltimateBendingResults(theta=theta),
)
# add label
if labels:
ult_res.label = labels[idx + 2]
# add ultimate result to moment interactions results
mi_results.results.append(ult_res)
# update progress
if progress:
progress.update(task, advance=1)
# sort results
mi_results.sort_results()
if progress_bar:
# create progress bar
progress = utils.create_known_progress()
with Live(progress, refresh_per_second=10) as live:
# add progress bar task
task = progress.add_task(
description="[red]Generating M-N diagram",
total=len(analysis_list) + len(control_points),
)
micurve(progress=progress)
# display finished progress bar
progress.update(
task,
description="[bold green]:white_check_mark: M-N diagram generated",
)
live.refresh()
else:
micurve()
# cut diagram at max_comp
if max_comp:
# check input - if value greater than maximum compression
if max_comp > mi_results.results[0].n:
msg = f"max_comp={max_comp} is greater than the maximum axial capacity "
msg += f"{mi_results.results[0].n}."
raise ValueError(msg)
# get max_comp point
ult_res = self.ultimate_bending_capacity(theta=theta, n=max_comp)
# determine which results to delete
idx_to_keep = 0
for idx, mi_res in enumerate(mi_results.results):
# determine which index is the first to keep
if idx_to_keep == 0 and mi_res.n < max_comp:
idx_to_keep = idx
break
# remove points in diagram
del mi_results.results[:idx_to_keep]
# get labels
if max_comp_labels:
pt1_label = max_comp_labels[0]
pt2_label = max_comp_labels[1]
else:
pt1_label = None
pt2_label = None
# add first two points to diagram
# (m_max_comp, max_comp)
# apply label
ult_res.label = pt2_label
mi_results.results.insert(0, ult_res)
# (0, max_comp)
mi_results.results.insert(
0, # insertion index
res.UltimateBendingResults(
theta=theta,
d_n=inf,
k_u=0,
n=max_comp,
m_x=0,
m_y=0,
m_xy=0,
label=pt1_label,
),
)
return mi_results
[docs] def biaxial_bending_diagram(
self,
n: float = 0,
n_points: int = 48,
progress_bar: bool = True,
) -> res.BiaxialBendingResults:
"""Generates a biaxial bending diagram given a net axial force ``n`` and
``n_points`` calculation points.
:param n: Net axial force
:param n_points: Number of calculation points
:param progress_bar: If set to True, displays the progress bar
:return: Biaxial bending results
"""
# initialise results
bb_results = res.BiaxialBendingResults(n=n)
# calculate d_theta
d_theta = 2 * np.pi / n_points
# generate list of thetas
theta_list = np.linspace(start=-np.pi, stop=np.pi - d_theta, num=n_points)
# function that performs biaxial bending analysis
def bbcurve(progress=None):
# loop through thetas
for theta in theta_list:
ultimate_results = self.ultimate_bending_capacity(theta=theta, n=n)
bb_results.results.append(ultimate_results)
if progress:
progress.update(task, advance=1)
# add first result to end of list top
bb_results.results.append(bb_results.results[0])
if progress_bar:
# create progress bar
progress = utils.create_known_progress()
with Live(progress, refresh_per_second=10) as live:
task = progress.add_task(
description="[red]Generating biaxial bending diagram",
total=n_points,
)
bbcurve(progress=progress)
progress.update(
task,
description="[bold green]:white_check_mark: Biaxial bending diagram generated",
)
live.refresh()
else:
bbcurve()
return bb_results
[docs] def calculate_uncracked_stress(
self,
n: float = 0,
m_x: float = 0,
m_y: float = 0,
) -> res.StressResult:
"""Calculates stresses within the reinforced concrete section assuming an
uncracked section.
Uses gross area section properties to determine concrete and reinforcement
stresses given an axial force ``n``, and bending moments ``m_x`` and ``m_y``.
:param n: Axial force
:param m_x: Bending moment about the x-axis
:param m_y: Bending moment about the y-axis
:return: Stress results object
"""
# initialise stress results
conc_sections = []
conc_sigs = []
conc_forces = []
meshed_reinf_sections = []
meshed_reinf_sigs = []
meshed_reinf_forces = []
lumped_reinf_geoms = []
lumped_reinf_sigs = []
lumped_reinf_strains = []
lumped_reinf_forces = []
# get uncracked section properties
e_a = self.gross_properties.e_a
cx = self.gross_properties.cx
cy = self.gross_properties.cy
e_ixx = self.gross_properties.e_ixx_c
e_iyy = self.gross_properties.e_iyy_c
e_ixy = self.gross_properties.e_ixy_c
# calculate neutral axis rotation
grad = (e_ixy * m_x - e_ixx * m_y) / (e_iyy * m_x - e_ixy * m_y)
theta = np.arctan2(grad, 1)
if np.isclose(theta, 0):
theta = 0
# point on neutral axis is centroid
point_na = (cx, cy)
# split meshed geometries above and below neutral axis
split_meshed_geoms = []
for meshed_geom in self.meshed_geometries:
top_geoms, bot_geoms = meshed_geom.split_section(
point=point_na,
theta=theta,
)
split_meshed_geoms.extend(top_geoms)
split_meshed_geoms.extend(bot_geoms)
# loop through all meshed geometries and calculate stress
for meshed_geom in split_meshed_geoms:
analysis_section = AnalysisSection(geometry=meshed_geom)
# calculate stress, force and point of action
sig, n_sec, d_x, d_y = analysis_section.get_elastic_stress(
n=n,
m_x=m_x,
m_y=m_y,
e_a=e_a,
cx=cx,
cy=cy,
e_ixx=e_ixx,
e_iyy=e_iyy,
e_ixy=e_ixy,
)
# save results
if isinstance(meshed_geom, CPGeomConcrete):
conc_sigs.append(sig)
conc_forces.append((n_sec, d_x, d_y))
conc_sections.append(analysis_section)
else:
meshed_reinf_sigs.append(sig)
meshed_reinf_forces.append((n_sec, d_x, d_y))
meshed_reinf_sections.append(analysis_section)
# loop through all lumped geometries and calculate stress
for lumped_geom in self.reinf_geometries_lumped:
# initialise stress and position
sig = 0
centroid = lumped_geom.calculate_centroid()
x = centroid[0] - cx
y = centroid[1] - cy
# axial stress
sig += n * lumped_geom.material.elastic_modulus / e_a
# bending moment stress
sig += lumped_geom.material.elastic_modulus * (
-(e_ixy * m_x) / (e_ixx * e_iyy - e_ixy**2) * x
+ (e_iyy * m_x) / (e_ixx * e_iyy - e_ixy**2) * y
)
sig += lumped_geom.material.elastic_modulus * (
+(e_ixx * m_y) / (e_ixx * e_iyy - e_ixy**2) * x
- (e_ixy * m_y) / (e_ixx * e_iyy - e_ixy**2) * y
)
strain = sig / lumped_geom.material.elastic_modulus
# net force and point of action
n_lumped = sig * lumped_geom.calculate_area()
lumped_reinf_sigs.append(sig)
lumped_reinf_strains.append(strain)
lumped_reinf_forces.append((n_lumped, x, y))
lumped_reinf_geoms.append(lumped_geom)
return res.StressResult(
concrete_section=self,
concrete_analysis_sections=conc_sections,
concrete_stresses=conc_sigs,
concrete_forces=conc_forces,
meshed_reinforcement_sections=meshed_reinf_sections,
meshed_reinforcement_stresses=meshed_reinf_sigs,
meshed_reinforcement_forces=meshed_reinf_forces,
lumped_reinforcement_geometries=lumped_reinf_geoms,
lumped_reinforcement_stresses=lumped_reinf_sigs,
lumped_reinforcement_strains=lumped_reinf_strains,
lumped_reinforcement_forces=lumped_reinf_forces,
)
[docs] def calculate_cracked_stress(
self,
cracked_results: res.CrackedResults,
n: float = 0,
m: float = 0,
) -> res.StressResult:
"""Calculates stresses within the reinforced concrete section assuming a cracked
section.
Uses cracked area section properties to determine concrete and reinforcement
stresses given an axial force ``n`` and bending moment ``m`` about the bending
axis stored in ``cracked_results``.
:param cracked_results: Cracked results objects
:param n: Axial force
:param m: Bending moment
:return: Stress results object
"""
# initialise stress results
conc_sections = []
conc_sigs = []
conc_forces = []
meshed_reinf_sections = []
meshed_reinf_sigs = []
meshed_reinf_forces = []
lumped_reinf_geoms = []
lumped_reinf_sigs = []
lumped_reinf_strains = []
lumped_reinf_forces = []
# get cracked section properties
e_a = cracked_results.e_a_cr
cx = cracked_results.cx
cy = cracked_results.cy
e_ixx = cracked_results.e_ixx_c_cr
e_iyy = cracked_results.e_iyy_c_cr
e_ixy = cracked_results.e_ixy_c_cr
# correct small e_ixy sign error
if abs(e_ixy / cracked_results.e_i11_cr) < 1e-12:
e_ixy = 0
# get bending angle
theta = cracked_results.theta
# handle cardinal points (avoid divide by zeros)
tan_theta = np.tan(theta)
with np.errstate(divide="ignore"):
c = (e_ixx - e_ixy * tan_theta) / (e_ixy - e_iyy * tan_theta)
# calculate bending moment about each axis (figure out signs)
sign = 0
if theta <= 0:
if c < 0:
sign = -1
elif c > 0:
sign = 1
else:
if c < 0:
sign = 1
else:
sign = -1
m_x = sign * np.sqrt(m * m / (1 + 1 / (c * c)))
m_y = m_x / c
# loop through all meshed geometries and calculate stress
for geom in cracked_results.cracked_geometries:
if geom.material.meshed:
analysis_section = AnalysisSection(geometry=geom)
# calculate stress, force and point of action
sig, n_sec, d_x, d_y = analysis_section.get_elastic_stress(
n=n,
m_x=m_x,
m_y=m_y,
e_a=e_a,
cx=cx,
cy=cy,
e_ixx=e_ixx,
e_iyy=e_iyy,
e_ixy=e_ixy,
)
# save results
if isinstance(geom, CPGeomConcrete):
conc_sigs.append(sig)
conc_forces.append((n_sec, d_x, d_y))
conc_sections.append(analysis_section)
else:
meshed_reinf_sigs.append(sig)
meshed_reinf_forces.append((n_sec, d_x, d_y))
meshed_reinf_sections.append(analysis_section)
# loop through all lumped geometries and calculate stress
for lumped_geom in self.reinf_geometries_lumped:
# initialise stress and position of bar
sig = 0
centroid = lumped_geom.calculate_centroid()
x = centroid[0] - cx
y = centroid[1] - cy
# axial stress
sig += n * lumped_geom.material.elastic_modulus / e_a
# bending moment stress
sig += lumped_geom.material.elastic_modulus * (
-(e_ixy * m_x) / (e_ixx * e_iyy - e_ixy**2) * x
+ (e_iyy * m_x) / (e_ixx * e_iyy - e_ixy**2) * y
)
sig += lumped_geom.material.elastic_modulus * (
+(e_ixx * m_y) / (e_ixx * e_iyy - e_ixy**2) * x
- (e_ixy * m_y) / (e_ixx * e_iyy - e_ixy**2) * y
)
strain = sig / lumped_geom.material.elastic_modulus
# net force and point of action
n_lumped = sig * lumped_geom.calculate_area()
lumped_reinf_sigs.append(sig)
lumped_reinf_strains.append(strain)
lumped_reinf_forces.append((n_lumped, x, y))
lumped_reinf_geoms.append(lumped_geom)
return res.StressResult(
concrete_section=self,
concrete_analysis_sections=conc_sections,
concrete_stresses=conc_sigs,
concrete_forces=conc_forces,
meshed_reinforcement_sections=meshed_reinf_sections,
meshed_reinforcement_stresses=meshed_reinf_sigs,
meshed_reinforcement_forces=meshed_reinf_forces,
lumped_reinforcement_geometries=lumped_reinf_geoms,
lumped_reinforcement_stresses=lumped_reinf_sigs,
lumped_reinforcement_strains=lumped_reinf_strains,
lumped_reinforcement_forces=lumped_reinf_forces,
)
[docs] def calculate_service_stress(
self,
moment_curvature_results: res.MomentCurvatureResults,
m: float,
kappa: Optional[float] = None,
) -> res.StressResult:
"""Calculates service stresses within the reinforced concrete section.
Uses linear interpolation of the moment-curvature results to determine the
curvature of the section given the user supplied moment, and thus the stresses
within the section. Otherwise, a curvature can be provided which overrides the
supplied moment.
:param moment_curvature_results: Moment-curvature results objects
:param m: Bending moment
:param kappa: Curvature, if provided overrides the supplied bending moment and
calculates the stress at the given curvature
:return: Stress results object
"""
if kappa is None:
# get curvature
kappa = moment_curvature_results.get_curvature(moment=m)
# get theta
theta = moment_curvature_results.theta
# initialise variables
mk = res.MomentCurvatureResults(theta=theta)
# set neutral axis depth limits
# depth of neutral axis at extreme tensile fibre
extreme_fibre, d_t = utils.calculate_extreme_fibre(
points=self.compound_geometry.points, theta=theta
)
a = 1e-6 * d_t # sufficiently small depth of compressive zone
b = d_t # neutral axis at extreme tensile fibre
# find neutral axis that gives convergence of the axial force
try:
(d_n, r) = brentq(
f=self.service_normal_force_convergence,
a=a,
b=b,
args=(kappa, mk),
xtol=1e-3,
rtol=1e-6, # type: ignore
full_output=True,
disp=False,
)
except ValueError:
msg = "Analysis failed. Confirm that the supplied moment/curvature is "
msg += "within the range of the moment-curvature analysis."
raise utils.AnalysisError(msg)
# initialise stress results
conc_sections = []
conc_sigs = []
conc_forces = []
meshed_reinf_sections = []
meshed_reinf_sigs = []
meshed_reinf_forces = []
lumped_reinf_geoms = []
lumped_reinf_sigs = []
lumped_reinf_strains = []
lumped_reinf_forces = []
# find point on neutral axis by shifting by d_n
point_na = utils.point_on_neutral_axis(
extreme_fibre=extreme_fibre, d_n=d_n, theta=theta
)
# create splits in meshed geometries at points in stress-strain profiles
meshed_split_geoms: List[Union[CPGeom, CPGeomConcrete]] = []
for meshed_geom in self.meshed_geometries:
split_geoms = utils.split_geom_at_strains(
geom=meshed_geom,
theta=theta,
point_na=point_na,
ultimate=False,
kappa=kappa,
)
meshed_split_geoms.extend(split_geoms)
# loop through all meshed geometries and calculate stress
for meshed_geom in meshed_split_geoms:
analysis_section = AnalysisSection(geometry=meshed_geom)
# calculate stress, force and point of action
sig, n_sec, d_x, d_y = analysis_section.get_service_stress(
d_n=d_n,
kappa=kappa,
point_na=point_na,
theta=theta,
centroid=self.moment_centroid,
)
# save results
if isinstance(meshed_geom, CPGeomConcrete):
conc_sigs.append(sig)
conc_forces.append((n_sec, d_x, d_y))
conc_sections.append(analysis_section)
else:
meshed_reinf_sigs.append(sig)
meshed_reinf_forces.append((n_sec, d_x, d_y))
meshed_reinf_sections.append(analysis_section)
# loop through all lumped geometries and calculate stress
for lumped_geom in self.reinf_geometries_lumped:
# get position of geometry
centroid = lumped_geom.calculate_centroid()
# get strain at centroid of lump
strain = utils.get_service_strain(
point=(centroid[0], centroid[1]),
point_na=point_na,
theta=theta,
kappa=kappa,
)
# calculate stress, force and point of action
sig = lumped_geom.material.stress_strain_profile.get_stress(strain=strain)
n_lumped = sig * lumped_geom.calculate_area()
lumped_reinf_sigs.append(sig)
lumped_reinf_strains.append(strain)
lumped_reinf_forces.append(
(
n_lumped,
centroid[0] - self.moment_centroid[0],
centroid[1] - self.moment_centroid[1],
)
)
lumped_reinf_geoms.append(lumped_geom)
return res.StressResult(
concrete_section=self,
concrete_analysis_sections=conc_sections,
concrete_stresses=conc_sigs,
concrete_forces=conc_forces,
meshed_reinforcement_sections=meshed_reinf_sections,
meshed_reinforcement_stresses=meshed_reinf_sigs,
meshed_reinforcement_forces=meshed_reinf_forces,
lumped_reinforcement_geometries=lumped_reinf_geoms,
lumped_reinforcement_stresses=lumped_reinf_sigs,
lumped_reinforcement_strains=lumped_reinf_strains,
lumped_reinforcement_forces=lumped_reinf_forces,
)
[docs] def calculate_ultimate_stress(
self,
ultimate_results: res.UltimateBendingResults,
) -> res.StressResult:
"""Calculates ultimate stresses within the reinforced concrete section.
:param ultimate_results: Ultimate bending results objects
:return: Stress results object
"""
# depth of neutral axis at extreme tensile fibre
extreme_fibre, _ = utils.calculate_extreme_fibre(
points=self.compound_geometry.points, theta=ultimate_results.theta
)
# find point on neutral axis by shifting by d_n
if isinf(ultimate_results.d_n):
point_na = (0, 0)
else:
point_na = utils.point_on_neutral_axis(
extreme_fibre=extreme_fibre,
d_n=ultimate_results.d_n,
theta=ultimate_results.theta,
)
# initialise stress results for each concrete geometry
conc_sections = []
conc_sigs = []
conc_forces = []
meshed_reinf_sections = []
meshed_reinf_sigs = []
meshed_reinf_forces = []
lumped_reinf_geoms = []
lumped_reinf_sigs = []
lumped_reinf_strains = []
lumped_reinf_forces = []
# create splits in meshed geometries at points in stress-strain profiles
meshed_split_geoms: List[Union[CPGeom, CPGeomConcrete]] = []
if isinf(ultimate_results.d_n):
meshed_split_geoms = self.meshed_geometries
else:
for meshed_geom in self.meshed_geometries:
split_geoms = utils.split_geom_at_strains(
geom=meshed_geom,
theta=ultimate_results.theta,
point_na=point_na,
ultimate=True,
ultimate_strain=self.gross_properties.conc_ultimate_strain,
d_n=ultimate_results.d_n,
)
meshed_split_geoms.extend(split_geoms)
# loop through all concrete geometries and calculate stress
for meshed_geom in meshed_split_geoms:
analysis_section = AnalysisSection(geometry=meshed_geom)
# calculate stress, force and point of action
sig, n_sec, d_x, d_y = analysis_section.get_ultimate_stress(
d_n=ultimate_results.d_n,
point_na=point_na,
theta=ultimate_results.theta,
ultimate_strain=self.gross_properties.conc_ultimate_strain,
centroid=self.moment_centroid,
)
# save results
if isinstance(meshed_geom, CPGeomConcrete):
conc_sigs.append(sig)
conc_forces.append((n_sec, d_x, d_y))
conc_sections.append(analysis_section)
else:
meshed_reinf_sigs.append(sig)
meshed_reinf_forces.append((n_sec, d_x, d_y))
meshed_reinf_sections.append(analysis_section)
# loop through all lumped geometries and calculate stress
for lumped_geom in self.reinf_geometries_lumped:
# get position of lump
centroid = lumped_geom.calculate_centroid()
# get strain at centroid of lump
if isinf(ultimate_results.d_n):
strain = self.gross_properties.conc_ultimate_strain
else:
strain = utils.get_ultimate_strain(
point=(centroid[0], centroid[1]),
point_na=point_na,
d_n=ultimate_results.d_n,
theta=ultimate_results.theta,
ultimate_strain=self.gross_properties.conc_ultimate_strain,
)
# calculate stress, force and point of action
sig = lumped_geom.material.stress_strain_profile.get_stress(strain=strain)
n_lumped = sig * lumped_geom.calculate_area()
lumped_reinf_sigs.append(sig)
lumped_reinf_strains.append(strain)
lumped_reinf_forces.append(
(
n_lumped,
centroid[0] - self.moment_centroid[0],
centroid[1] - self.moment_centroid[1],
)
)
lumped_reinf_geoms.append(lumped_geom)
return res.StressResult(
concrete_section=self,
concrete_analysis_sections=conc_sections,
concrete_stresses=conc_sigs,
concrete_forces=conc_forces,
meshed_reinforcement_sections=meshed_reinf_sections,
meshed_reinforcement_stresses=meshed_reinf_sigs,
meshed_reinforcement_forces=meshed_reinf_forces,
lumped_reinforcement_geometries=lumped_reinf_geoms,
lumped_reinforcement_stresses=lumped_reinf_sigs,
lumped_reinforcement_strains=lumped_reinf_strains,
lumped_reinforcement_forces=lumped_reinf_forces,
)
[docs] def extreme_bar(
self,
theta: float,
) -> Tuple[float, float]:
r"""Given neutral axis angle ``theta``, determines the depth of the furthest
lumped reinforcement from the extreme compressive fibre and also returns its
yield strain.
:param theta: Angle (in radians) the neutral axis makes with the horizontal
axis (:math:`-\pi \leq \theta \leq \pi`)
:return: Depth of furthest bar and its yield strain
"""
# initialise variables
d_ext = 0
# calculate extreme fibre in local coordinates
extreme_fibre, _ = utils.calculate_extreme_fibre(
points=self.compound_geometry.points, theta=theta
)
_, ef_v = utils.global_to_local(
theta=theta, x=extreme_fibre[0], y=extreme_fibre[1]
)
# get depth to extreme lumped reinforcement
extreme_geom = self.reinf_geometries_lumped[0]
for lumped_geom in self.reinf_geometries_lumped:
centroid = lumped_geom.calculate_centroid()
# convert centroid to local coordinates
_, c_v = utils.global_to_local(theta=theta, x=centroid[0], y=centroid[1])
# calculate d
d = ef_v - c_v
if d > d_ext:
d_ext = d
extreme_geom = lumped_geom
# calculate yield strain
yield_strain = (
extreme_geom.material.stress_strain_profile.get_yield_strength()
/ extreme_geom.material.stress_strain_profile.get_elastic_modulus()
)
return d_ext, yield_strain
[docs] def decode_d_n(
self,
theta: float,
cp: Tuple[str, float],
d_t: float,
) -> float:
r"""Decodes a neutral axis depth given a control point ``cp``.
:param theta: Angle (in radians) the neutral axis makes with the horizontal axis
(:math:`-\pi \leq \theta \leq \pi`)
:param cp: Control point to decode
:param d_t: Depth to extreme tensile fibre
:return: Decoded neutral axis depth
"""
# multiple of section depth
if cp[0] == "D":
# check D
if cp[1] <= 0:
raise ValueError(
f"Provided section depth (D) {cp[1]:.3f} must be greater than 0."
)
return cp[1] * d_t
# neutral axis depth
elif cp[0] == "d_n":
# check d_n
if cp[1] <= 0:
raise ValueError(f"Provided d_n {cp[1]:.3f} must be greater than zero.")
return cp[1]
# extreme tensile reinforcement yield ratio
elif cp[0] == "fy":
# get extreme tensile bar
d_ext, eps_sy = self.extreme_bar(theta=theta)
# get compressive strain at extreme fibre
eps_cu = self.gross_properties.conc_ultimate_strain
return d_ext * (eps_cu) / (cp[1] * eps_sy + eps_cu)
# provided axial force
elif cp[0] == "N":
ult_res = self.ultimate_bending_capacity(theta=theta, n=cp[1])
return ult_res.d_n
# zero curvature
elif cp[0] == "kappa0":
return inf
# control point type not valid
else:
msg = "First value of control point tuple must be D, d_n, fy, N or "
msg += "kappa0."
raise ValueError(msg)
[docs] def plot_section(
self,
title: str = "Reinforced Concrete Section",
background: bool = False,
**kwargs,
) -> matplotlib.axes.Axes: # type: ignore
"""Plots the reinforced concrete section.
:param title: Plot title
:param background: If set to True, uses the plot as a background plot
:param kwargs: Passed to :func:`~concreteproperties.post.plotting_context`
:return: Matplotlib axes object
"""
with plotting_context(title=title, aspect=True, **kwargs) as (fig, ax):
# create list of already plotted materials
plotted_materials = []
legend_labels = []
# plot meshed geometries
for meshed_geom in self.meshed_geometries:
if meshed_geom.material not in plotted_materials:
patch = mpatches.Patch(
color=meshed_geom.material.colour,
label=meshed_geom.material.name,
)
legend_labels.append(patch)
plotted_materials.append(meshed_geom.material)
# TODO - when shapely implements polygon plotting, fix this up
sec = AnalysisSection(geometry=meshed_geom)
if not background:
sec.plot_shape(ax=ax)
# plot the points and facets
for f in meshed_geom.facets:
if background:
fmt = "k-"
else:
fmt = "ko-"
ax.plot( # type: ignore
[meshed_geom.points[f[0]][0], meshed_geom.points[f[1]][0]],
[meshed_geom.points[f[0]][1], meshed_geom.points[f[1]][1]],
fmt,
markersize=2,
linewidth=1.5,
)
# plot lumped geometries
for lumped_geom in self.reinf_geometries_lumped:
if lumped_geom.material not in plotted_materials:
patch = mpatches.Patch(
color=lumped_geom.material.colour,
label=lumped_geom.material.name,
)
legend_labels.append(patch)
plotted_materials.append(lumped_geom.material)
# plot the points and facets
coords = list(lumped_geom.geom.exterior.coords) # type: ignore
bar = mpatches.Polygon(
xy=coords, closed=False, color=lumped_geom.material.colour
)
ax.add_patch(bar) # type: ignore
if not background:
ax.legend( # type: ignore
loc="center left", bbox_to_anchor=(1, 0.5), handles=legend_labels
)
return ax