Source code for concreteproperties.results

from __future__ import annotations

import warnings
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, List, Optional, Tuple

import matplotlib.cm as cm
import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
import matplotlib.tri as tri
import numpy as np
from matplotlib.collections import PatchCollection
from matplotlib.colors import CenteredNorm  # type: ignore
from mpl_toolkits.axes_grid1.axes_divider import make_axes_locatable
from rich.console import Console
from rich.table import Table
from scipy.interpolate import interp1d
from sectionproperties.pre.geometry import CompoundGeometry
from shapely.geometry import Point
from shapely.geometry.polygon import Polygon

from concreteproperties.post import plotting_context

if TYPE_CHECKING:
    import matplotlib

    from concreteproperties.analysis_section import AnalysisSection
    from concreteproperties.concrete_section import ConcreteSection
    from concreteproperties.pre import CPGeom


[docs]@dataclass class GrossProperties: """Class for storing gross concrete section properties. All properties with an `e_` preceding the property are multiplied by the elastic modulus. In order to obtain transformed properties, call the :meth:`~concreteproperties.concrete_section.ConcreteSection.get_transformed_gross_properties` method. """ # section areas total_area: float = 0 concrete_area: float = 0 reinf_meshed_area: float = 0 reinf_lumped_area: float = 0 e_a: float = 0 # section mass mass: float = 0 # section perimeter perimeter: float = 0 # first moments of area e_qx: float = 0 e_qy: float = 0 qx_gross: float = 0 qy_gross: float = 0 # centroids cx: float = 0 cy: float = 0 cx_gross: float = 0 cy_gross: float = 0 # second moments of area e_ixx_g: float = 0 e_iyy_g: float = 0 e_ixy_g: float = 0 e_ixx_c: float = 0 e_iyy_c: float = 0 e_ixy_c: float = 0 e_i11: float = 0 e_i22: float = 0 # principal axis angle phi: float = 0 # section moduli e_zxx_plus: float = 0 e_zxx_minus: float = 0 e_zyy_plus: float = 0 e_zyy_minus: float = 0 e_z11_plus: float = 0 e_z11_minus: float = 0 e_z22_plus: float = 0 e_z22_minus: float = 0 # other properties conc_ultimate_strain: float = 0
[docs] def print_results( self, fmt: str = "8.6e", ): """Prints the gross concrete section properties to the terminal. :param fmt: Number format """ table = Table(title="Gross Concrete Section Properties") table.add_column("Property", justify="left", style="cyan", no_wrap=True) table.add_column("Value", justify="right", style="green") table.add_row("Total Area", "{:>{fmt}}".format(self.total_area, fmt=fmt)) table.add_row("Concrete Area", "{:>{fmt}}".format(self.concrete_area, fmt=fmt)) table.add_row( "Meshed Reinforcement Area", "{:>{fmt}}".format(self.reinf_meshed_area, fmt=fmt), ) table.add_row( "Lumped Reinforcement Area", "{:>{fmt}}".format(self.reinf_lumped_area, fmt=fmt), ) table.add_row("Axial Rigidity (EA)", "{:>{fmt}}".format(self.e_a, fmt=fmt)) table.add_row("Mass (per unit length)", "{:>{fmt}}".format(self.mass, fmt=fmt)) table.add_row("Perimeter", "{:>{fmt}}".format(self.perimeter, fmt=fmt)) table.add_row("E.Qx", "{:>{fmt}}".format(self.e_qx, fmt=fmt)) table.add_row("E.Qy", "{:>{fmt}}".format(self.e_qy, fmt=fmt)) table.add_row("x-Centroid", "{:>{fmt}}".format(self.cx, fmt=fmt)) table.add_row("y-Centroid", "{:>{fmt}}".format(self.cy, fmt=fmt)) table.add_row("x-Centroid (Gross)", "{:>{fmt}}".format(self.cx_gross, fmt=fmt)) table.add_row("y-Centroid (Gross)", "{:>{fmt}}".format(self.cy_gross, fmt=fmt)) table.add_row("E.Ixx_g", "{:>{fmt}}".format(self.e_ixx_g, fmt=fmt)) table.add_row("E.Iyy_g", "{:>{fmt}}".format(self.e_iyy_g, fmt=fmt)) table.add_row("E.Ixy_g", "{:>{fmt}}".format(self.e_ixy_g, fmt=fmt)) table.add_row("E.Ixx_c", "{:>{fmt}}".format(self.e_ixx_c, fmt=fmt)) table.add_row("E.Iyy_c", "{:>{fmt}}".format(self.e_iyy_c, fmt=fmt)) table.add_row("E.Ixy_c", "{:>{fmt}}".format(self.e_ixy_c, fmt=fmt)) table.add_row("E.I11", "{:>{fmt}}".format(self.e_i11, fmt=fmt)) table.add_row("E.I22", "{:>{fmt}}".format(self.e_i22, fmt=fmt)) table.add_row("Principal Axis Angle", "{:>{fmt}}".format(self.phi, fmt=fmt)) table.add_row("E.Zxx+", "{:>{fmt}}".format(self.e_zxx_plus, fmt=fmt)) table.add_row("E.Zxx-", "{:>{fmt}}".format(self.e_zxx_minus, fmt=fmt)) table.add_row("E.Zyy+", "{:>{fmt}}".format(self.e_zyy_plus, fmt=fmt)) table.add_row("E.Zyy-", "{:>{fmt}}".format(self.e_zyy_minus, fmt=fmt)) table.add_row("E.Z11+", "{:>{fmt}}".format(self.e_z11_plus, fmt=fmt)) table.add_row("E.Z11-", "{:>{fmt}}".format(self.e_z11_minus, fmt=fmt)) table.add_row("E.Z22+", "{:>{fmt}}".format(self.e_z22_plus, fmt=fmt)) table.add_row("E.Z22-", "{:>{fmt}}".format(self.e_z22_minus, fmt=fmt)) table.add_row( "Ultimate Concrete Strain", "{:>{fmt}}".format(self.conc_ultimate_strain, fmt=fmt), ) console = Console() console.print(table)
[docs]@dataclass class TransformedGrossProperties: """Class for storing transformed gross concrete section properties. :param concrete_properties: Concrete properties object :param elastic_modulus: Reference elastic modulus """ concrete_properties: GrossProperties = field(repr=False) elastic_modulus: float # area area: float = 0 # first moments of area qx: float = 0 qy: float = 0 # second moments of area ixx_g: float = 0 iyy_g: float = 0 ixy_g: float = 0 ixx_c: float = 0 iyy_c: float = 0 ixy_c: float = 0 i11: float = 0 i22: float = 0 # section moduli zxx_plus: float = 0 zxx_minus: float = 0 zyy_plus: float = 0 zyy_minus: float = 0 z11_plus: float = 0 z11_minus: float = 0 z22_plus: float = 0 z22_minus: float = 0 def __post_init__( self, ): self.area = self.concrete_properties.e_a / self.elastic_modulus self.qx = self.concrete_properties.e_qx / self.elastic_modulus self.qy = self.concrete_properties.e_qy / self.elastic_modulus self.ixx_g = self.concrete_properties.e_ixx_g / self.elastic_modulus self.iyy_g = self.concrete_properties.e_iyy_g / self.elastic_modulus self.ixy_g = self.concrete_properties.e_ixy_g / self.elastic_modulus self.ixx_c = self.concrete_properties.e_ixx_c / self.elastic_modulus self.iyy_c = self.concrete_properties.e_iyy_c / self.elastic_modulus self.ixy_c = self.concrete_properties.e_ixy_c / self.elastic_modulus self.i11 = self.concrete_properties.e_i11 / self.elastic_modulus self.i22 = self.concrete_properties.e_i22 / self.elastic_modulus self.zxx_plus = self.concrete_properties.e_zxx_plus / self.elastic_modulus self.zxx_minus = self.concrete_properties.e_zxx_minus / self.elastic_modulus self.zyy_plus = self.concrete_properties.e_zyy_plus / self.elastic_modulus self.zyy_minus = self.concrete_properties.e_zyy_minus / self.elastic_modulus self.z11_plus = self.concrete_properties.e_z11_plus / self.elastic_modulus self.z11_minus = self.concrete_properties.e_z11_minus / self.elastic_modulus self.z22_plus = self.concrete_properties.e_z22_plus / self.elastic_modulus self.z22_minus = self.concrete_properties.e_z22_minus / self.elastic_modulus
[docs] def print_results( self, fmt: str = "8.6e", ): """Prints the transformed gross concrete section properties to the terminal. :param fmt: Number format """ table = Table(title="Transformed Gross Concrete Section Properties") table.add_column("Property", justify="left", style="cyan", no_wrap=True) table.add_column("Value", justify="right", style="green") table.add_row("E_ref", "{:>{fmt}}".format(self.elastic_modulus, fmt=fmt)) table.add_row("Area", "{:>{fmt}}".format(self.area, fmt=fmt)) table.add_row("Qx", "{:>{fmt}}".format(self.qx, fmt=fmt)) table.add_row("Qy", "{:>{fmt}}".format(self.qy, fmt=fmt)) table.add_row("Ixx_g", "{:>{fmt}}".format(self.ixx_g, fmt=fmt)) table.add_row("Iyy_g", "{:>{fmt}}".format(self.iyy_g, fmt=fmt)) table.add_row("Ixy_g", "{:>{fmt}}".format(self.ixy_g, fmt=fmt)) table.add_row("Ixx_c", "{:>{fmt}}".format(self.ixx_c, fmt=fmt)) table.add_row("Iyy_c", "{:>{fmt}}".format(self.iyy_c, fmt=fmt)) table.add_row("Ixy_c", "{:>{fmt}}".format(self.ixy_c, fmt=fmt)) table.add_row("I11", "{:>{fmt}}".format(self.i11, fmt=fmt)) table.add_row("I22", "{:>{fmt}}".format(self.i22, fmt=fmt)) table.add_row("Zxx+", "{:>{fmt}}".format(self.zxx_plus, fmt=fmt)) table.add_row("Zxx-", "{:>{fmt}}".format(self.zxx_minus, fmt=fmt)) table.add_row("Zyy+", "{:>{fmt}}".format(self.zyy_plus, fmt=fmt)) table.add_row("Zyy-", "{:>{fmt}}".format(self.zyy_minus, fmt=fmt)) table.add_row("Z11+", "{:>{fmt}}".format(self.z11_plus, fmt=fmt)) table.add_row("Z11-", "{:>{fmt}}".format(self.z11_minus, fmt=fmt)) table.add_row("Z22+", "{:>{fmt}}".format(self.z22_plus, fmt=fmt)) table.add_row("Z22-", "{:>{fmt}}".format(self.z22_minus, fmt=fmt)) console = Console() console.print(table)
[docs]@dataclass class CrackedResults: r"""Class for storing cracked concrete section properties. All properties with an `e_` preceding the property are multiplied by the elastic modulus. In order to obtain transformed properties, call the :meth:`~concreteproperties.results.CrackedResults.calculate_transformed_properties` method. :param theta: Angle (in radians) the neutral axis makes with the horizontal axis (:math:`-\pi \leq \theta \leq \pi`) """ theta: float m_cr: float = 0 d_nc: float = 0 cracked_geometries: List[CPGeom] = field(default_factory=list, repr=False) e_a_cr: float = 0 e_qx_cr: float = 0 e_qy_cr: float = 0 cx: float = 0 cy: float = 0 e_ixx_g_cr: float = 0 e_iyy_g_cr: float = 0 e_ixy_g_cr: float = 0 e_ixx_c_cr: float = 0 e_iyy_c_cr: float = 0 e_ixy_c_cr: float = 0 e_iuu_cr: float = 0 e_i11_cr: float = 0 e_i22_cr: float = 0 phi_cr: float = 0 # transformed properties elastic_modulus_ref: Optional[float] = None a_cr: Optional[float] = None qx_cr: Optional[float] = None qy_cr: Optional[float] = None ixx_g_cr: Optional[float] = None iyy_g_cr: Optional[float] = None ixy_g_cr: Optional[float] = None ixx_c_cr: Optional[float] = None iyy_c_cr: Optional[float] = None ixy_c_cr: Optional[float] = None iuu_cr: Optional[float] = None i11_cr: Optional[float] = None i22_cr: Optional[float] = None
[docs] def calculate_transformed_properties( self, elastic_modulus: float, ): """Calculates and stores transformed cracked properties using a reference elastic modulus. :param elastic_modulus: Reference elastic modulus """ self.elastic_modulus_ref = elastic_modulus self.a_cr = self.e_a_cr / elastic_modulus self.qx_cr = self.e_qx_cr / elastic_modulus self.qy_cr = self.e_qy_cr / elastic_modulus self.ixx_g_cr = self.e_ixx_g_cr / elastic_modulus self.iyy_g_cr = self.e_iyy_g_cr / elastic_modulus self.ixy_g_cr = self.e_ixy_g_cr / elastic_modulus self.ixx_c_cr = self.e_ixx_c_cr / elastic_modulus self.iyy_c_cr = self.e_iyy_c_cr / elastic_modulus self.ixy_c_cr = self.e_ixy_c_cr / elastic_modulus self.iuu_cr = self.e_iuu_cr / elastic_modulus self.i11_cr = self.e_i11_cr / elastic_modulus self.i22_cr = self.e_i22_cr / elastic_modulus
[docs] def plot_cracked_geometries( self, title: str = "Cracked Geometries", **kwargs, ) -> matplotlib.axes.Axes: # type: ignore """Plots the geometries that remain (are in compression or are reinforcement) after a cracked analysis. :param title: Plot title :param kwargs: Passed to :meth:`~sectionproperties.pre.geometry.CompoundGeometry.plot_geometry` :return: Matplotlib axes object """ return CompoundGeometry( [geom.to_sp_geom() for geom in self.cracked_geometries] ).plot_geometry(title=title, **kwargs)
[docs] def print_results( self, fmt: str = "8.6e", ): """Prints the cracked concrete section properties to the terminal. :param fmt: Number format """ table = Table(title="Cracked Concrete Section Properties") table.add_column("Property", justify="left", style="cyan", no_wrap=True) table.add_column("Value", justify="right", style="green") table.add_row("theta", "{:>{fmt}}".format(self.theta, fmt=fmt)) if self.elastic_modulus_ref: table.add_row( "E_ref", "{:>{fmt}}".format(self.elastic_modulus_ref, fmt=fmt) ) table.add_row("M_cr", "{:>{fmt}}".format(self.m_cr, fmt=fmt)) table.add_row("d_nc", "{:>{fmt}}".format(self.d_nc, fmt=fmt)) if self.a_cr: table.add_row("A_cr", "{:>{fmt}}".format(self.a_cr, fmt=fmt)) table.add_row("E.A_cr", "{:>{fmt}}".format(self.e_a_cr, fmt=fmt)) if self.qx_cr: table.add_row("Qx_cr", "{:>{fmt}}".format(self.qx_cr, fmt=fmt)) table.add_row("Qy_cr", "{:>{fmt}}".format(self.qy_cr, fmt=fmt)) table.add_row("E.Qx_cr", "{:>{fmt}}".format(self.e_qx_cr, fmt=fmt)) table.add_row("E.Qy_cr", "{:>{fmt}}".format(self.e_qy_cr, fmt=fmt)) table.add_row("x-Centroid", "{:>{fmt}}".format(self.cx, fmt=fmt)) table.add_row("y-Centroid", "{:>{fmt}}".format(self.cy, fmt=fmt)) if self.ixx_g_cr: table.add_row("Ixx_g_cr", "{:>{fmt}}".format(self.ixx_g_cr, fmt=fmt)) table.add_row("Iyy_g_cr", "{:>{fmt}}".format(self.iyy_g_cr, fmt=fmt)) table.add_row("Ixy_g_cr", "{:>{fmt}}".format(self.ixy_g_cr, fmt=fmt)) table.add_row("Ixx_c_cr", "{:>{fmt}}".format(self.ixx_c_cr, fmt=fmt)) table.add_row("Iyy_c_cr", "{:>{fmt}}".format(self.iyy_c_cr, fmt=fmt)) table.add_row("Ixy_c_cr", "{:>{fmt}}".format(self.ixy_c_cr, fmt=fmt)) table.add_row("Iuu_cr", "{:>{fmt}}".format(self.iuu_cr, fmt=fmt)) table.add_row("I11_cr", "{:>{fmt}}".format(self.i11_cr, fmt=fmt)) table.add_row("I22_cr", "{:>{fmt}}".format(self.i22_cr, fmt=fmt)) table.add_row("E.Ixx_g_cr", "{:>{fmt}}".format(self.e_ixx_g_cr, fmt=fmt)) table.add_row("E.Iyy_g_cr", "{:>{fmt}}".format(self.e_iyy_g_cr, fmt=fmt)) table.add_row("E.Ixy_g_cr", "{:>{fmt}}".format(self.e_ixy_g_cr, fmt=fmt)) table.add_row("E.Ixx_c_cr", "{:>{fmt}}".format(self.e_ixx_c_cr, fmt=fmt)) table.add_row("E.Iyy_c_cr", "{:>{fmt}}".format(self.e_iyy_c_cr, fmt=fmt)) table.add_row("E.Ixy_c_cr", "{:>{fmt}}".format(self.e_ixy_c_cr, fmt=fmt)) table.add_row("E.Iuu_cr", "{:>{fmt}}".format(self.e_iuu_cr, fmt=fmt)) table.add_row("E.I11_cr", "{:>{fmt}}".format(self.e_i11_cr, fmt=fmt)) table.add_row("E.I22_cr", "{:>{fmt}}".format(self.e_i22_cr, fmt=fmt)) table.add_row("phi_cr", "{:>{fmt}}".format(self.phi_cr, fmt=fmt)) console = Console() console.print(table)
[docs]@dataclass class MomentCurvatureResults: r"""Class for storing moment curvature results. :param theta: Angle (in radians) the neutral axis makes with the horizontal axis (:math:`-\pi \leq \theta \leq \pi`) :param kappa: List of curvatures :param n: List of axial forces :param m_x: List of bending moments about the x-axis :param m_y: List of bending moments about the y-axis :param m_xy: List of resultant bending moments :param failure_geometry: Geometry object of the region of the cross-section that failed, ending the moment curvature analysis :param convergence: The critical ratio between the strain and the failure strain within the cross-section for each curvature step in the analysis. A value of one indicates failure. """ # results theta: float kappa: List[float] = field(default_factory=list) n: List[float] = field(default_factory=list) m_x: List[float] = field(default_factory=list) m_y: List[float] = field(default_factory=list) m_xy: List[float] = field(default_factory=list) failure_geometry: CPGeom = field(init=False) convergence: List[float] = field(default_factory=list) # for analysis _kappa: float = field(default=0, repr=False) _n_i: float = field(default=0, repr=False) _m_x_i: float = field(default=0, repr=False) _m_y_i: float = field(default=0, repr=False) _failure: bool = field(default=False, repr=False) _failure_convergence: float = field(default=0, repr=False)
[docs] def plot_results( self, m_scale: float = 1e-6, fmt: str = "o-", **kwargs, ) -> matplotlib.axes.Axes: # type: ignore """Plots the moment curvature results. :param m_scale: Scaling factor to apply to bending moment :param fmt: Plot format string :param kwargs: Passed to :func:`~concreteproperties.post.plotting_context` :return: Matplotlib axes object """ # scale moments moments = np.array(self.m_xy) * m_scale # create plot and setup the plot with plotting_context(title="Moment-Curvature", **kwargs) as ( fig, ax, ): ax.plot(self.kappa, moments, fmt) # type: ignore plt.xlabel("Curvature") plt.ylabel("Moment") plt.grid(True) return ax
[docs] @staticmethod def plot_multiple_results( moment_curvature_results: List[MomentCurvatureResults], labels: List[str], m_scale: float = 1e-6, fmt: str = "o-", **kwargs, ) -> matplotlib.axes.Axes: # type: ignore """Plots multiple moment curvature results. :param moment_curvature_results: List of moment curvature results objects :param labels: List of labels for each moment curvature diagram :param m_scale: Scaling factor to apply to bending moment :param fmt: Plot format string :param kwargs: Passed to :func:`~concreteproperties.post.plotting_context` :return: Matplotlib axes object """ # create plot and setup the plot with plotting_context(title="Moment-Curvature", **kwargs) as ( fig, ax, ): idx = 0 # for each M-k curve for idx, mk_result in enumerate(moment_curvature_results): # scale results kappas = np.array(mk_result.kappa) moments = np.array(mk_result.m_xy) * m_scale ax.plot(kappas, moments, fmt, label=labels[idx]) # type: ignore plt.xlabel("Curvature") plt.ylabel("Moment") plt.grid(True) # if there is more than one curve show legend if idx > 0: ax.legend(loc="center left", bbox_to_anchor=(1, 0.5)) # type: ignore return ax
[docs] def plot_failure_geometry( self, title: str = "Failure Geometry", **kwargs, ) -> matplotlib.axes.Axes: # type: ignore """Plots the geometry that fails in the moment curvature analysis. :param title: Plot title :param kwargs: Passed to :meth:`~sectionproperties.pre.geometry.CompoundGeometry.plot_geometry` :return: Matplotlib axes object """ return self.failure_geometry.plot_geometry(title=title, **kwargs)
[docs] def get_curvature( self, moment: float, ) -> float: """Given a moment, uses the moment-curvature results to interpolate a curvature. :param moment: Bending moment at which to obtain curvature :raises ValueError: If supplied moment is outside bounds of moment-curvature results. :return: Curvature """ # check moment is within bounds of results m_min = min(self.m_xy) m_max = max(self.m_xy) if moment > m_max or moment < m_min: raise ValueError( "moment must be within the bounds of the moment-curvature results." ) f_kappa = interp1d( x=self.m_xy, y=self.kappa, kind="linear", ) return float(f_kappa(moment))
[docs]@dataclass(order=True) class UltimateBendingResults: r"""Class for storing ultimate bending results. :param theta: Angle (in radians) the neutral axis makes with the horizontal axis (:math:`-\pi \leq \theta \leq \pi`) :param d_n: Ultimate neutral axis depth :param k_u: Neutral axis parameter *(d_n / d)* :param n: Resultant axial force :param m_x: Resultant bending moment about the x-axis :param m_y: Resultant bending moment about the y-axis :param m_xy: Resultant bending moment :param label: Result label """ # bending angle theta: float # ultimate neutral axis depth d_n: float = 0 k_u: float = 0 # resultant actions n: float = 0 m_x: float = 0 m_y: float = 0 m_xy: float = 0 # label label: Optional[str] = field(default=None, compare=False)
[docs] def print_results( self, fmt: str = "8.6e", ): """Prints the ultimate bending results to the terminal. :param fmt: Number format """ table = Table(title="Ultimate Bending Results") table.add_column("Property", justify="left", style="cyan", no_wrap=True) table.add_column("Value", justify="right", style="green") if self.label: table.add_row("Label", self.label) table.add_row("Bending Angle - theta", "{:>{fmt}}".format(self.theta, fmt=fmt)) table.add_row("Neutral Axis Depth - d_n", "{:>{fmt}}".format(self.d_n, fmt=fmt)) table.add_row( "Neutral Axis Parameter - k_u", "{:>{fmt}}".format(self.k_u, fmt=fmt) ) table.add_row("Axial Force", "{:>{fmt}}".format(self.n, fmt=fmt)) table.add_row("Bending Capacity - m_x", "{:>{fmt}}".format(self.m_x, fmt=fmt)) table.add_row("Bending Capacity - m_y", "{:>{fmt}}".format(self.m_y, fmt=fmt)) table.add_row("Bending Capacity - m_xy", "{:>{fmt}}".format(self.m_xy, fmt=fmt)) console = Console() console.print(table)
[docs]@dataclass class MomentInteractionResults: """Class for storing moment interaction results. :param results: List of ultimate bending result objects """ results: List[UltimateBendingResults] = field(default_factory=list)
[docs] def sort_results(self) -> None: """Sorts the results by decreasing axial force.""" self.results.sort(reverse=True) # remove duplicates from sorted list new_results = [] for res in self.results: if res not in new_results: new_results.append(res) self.results = new_results
[docs] def get_results_lists( self, moment: str, ) -> Tuple[List[float], List[float]]: """Returns a list of axial forces and moments. :param moment: Which moment to plot, acceptable values are ``"m_x"``, ``"m_y"`` or ``"m_xy"`` :return: List of axial forces and moments *(n, m)* """ # build list of results n_list = [] m_list = [] for result in self.results: n_list.append(result.n) if moment == "m_x": m_list.append(result.m_x) elif moment == "m_y": m_list.append(result.m_y) elif moment == "m_xy": m_list.append(result.m_xy) else: raise ValueError(f"{moment} not an acceptable value for moment.") return n_list, m_list
[docs] def plot_diagram( self, n_scale: float = 1e-3, m_scale: float = 1e-6, moment: str = "m_x", fmt: str = "o-", labels: bool = False, label_offset: bool = False, **kwargs, ) -> matplotlib.axes.Axes: # type: ignore """Plots a moment interaction diagram. :param n_scale: Scaling factor to apply to axial force :param m_scale: Scaling factor to apply to the bending moment :param moment: Which moment to plot, acceptable values are ``"m_x"``, ``"m_y"`` or ``"m_xy"`` :param fmt: Plot format string :param labels: If set to True, also plots labels on the diagram :param label_offset: If set to True, attempts to offset the label from the diagram :param kwargs: Passed to :func:`~concreteproperties.post.plotting_context` :return: Matplotlib axes object """ # create plot and setup the plot with plotting_context(title="Moment Interaction Diagram", **kwargs) as ( fig, ax, ): # get results n_list, m_list = self.get_results_lists(moment=moment) # scale results forces = np.array(n_list) * n_scale moments = np.array(m_list) * m_scale # plot diagram ax.plot(moments, forces, fmt) # type: ignore # plot labels if labels: if label_offset: # compute gradients of curve and aspect ratio of plot grad = np.gradient([moments, forces], axis=1) x_diff = ax.get_xlim() # type: ignore y_diff = ax.get_ylim() # type: ignore ar = (y_diff[1] - y_diff[0]) / (x_diff[1] - x_diff[0]) for idx, m in enumerate(m_list): if self.results[idx].label: # get x,y position on plot x = m * m_scale y = n_list[idx] * n_scale if label_offset: # calculate text offset grad_pt = grad[1, idx] / grad[0, idx] / ar # type: ignore if grad_pt == 0: norm_angle = np.pi / 2 else: norm_angle = np.arctan2(-1 / grad_pt, 1) x_t = np.cos(norm_angle) * 20 y_t = np.sin(norm_angle) * 20 annotate_dict = { "xytext": (x_t, y_t), "textcoords": "offset points", "arrowprops": dict( arrowstyle="->", connectionstyle="angle,angleA=0,angleB=90,rad=10", ), "bbox": dict(boxstyle="round", fc="0.8"), } else: annotate_dict = {} # plot text ax.annotate( # type: ignore text=self.results[idx].label, xy=(x, y), **annotate_dict ) plt.xlabel("Bending Moment") plt.ylabel("Axial Force") plt.grid(True) return ax
[docs] @staticmethod def plot_multiple_diagrams( moment_interaction_results: List[MomentInteractionResults], labels: List[str], n_scale: float = 1e-3, m_scale: float = 1e-6, moment: str = "m_x", fmt: str = "o-", **kwargs, ) -> matplotlib.axes.Axes: # type: ignore """Plots multiple moment interaction diagrams. :param moment_interaction_results: List of moment interaction results objects :param labels: List of labels for each moment interaction diagram :param n_scale: Scaling factor to apply to axial force :param m_scale: Scaling factor to apply to bending moment :param moment: Which moment to plot, acceptable values are ``"m_x"``, ``"m_y"`` or ``"m_xy"`` :param fmt: Plot format string :param kwargs: Passed to :func:`~concreteproperties.post.plotting_context` :return: Matplotlib axes object """ # create plot and setup the plot with plotting_context(title="Moment Interaction Diagram", **kwargs) as ( fig, ax, ): idx = 0 # for each M-N curve for idx, mi_result in enumerate(moment_interaction_results): n_list, m_list = mi_result.get_results_lists(moment=moment) # scale results forces = np.array(n_list) * n_scale moments = np.array(m_list) * m_scale ax.plot(moments, forces, fmt, label=labels[idx]) # type: ignore plt.xlabel("Bending Moment") plt.ylabel("Axial Force") plt.grid(True) # if there is more than one curve show legend if idx > 0: ax.legend(loc="center left", bbox_to_anchor=(1, 0.5)) # type: ignore return ax
[docs] def point_in_diagram( self, n: float, m: float, moment: str = "m_x", ) -> bool: """Determines whether or not the combination of axial force and moment lies within the moment interaction diagram. :param n: Axial force :param m: Bending moment :param moment: Which moment to analyse, acceptable values are ``"m_x"``, ``"m_y"`` or ``"m_xy"`` :returns: True, if combination of axial force and moment is within the diagram """ # get results n_list, m_list = self.get_results_lists(moment=moment) # create a polygon from points on diagram poly_points = [] for idx, mom in enumerate(m_list): poly_points.append((mom, n_list[idx])) poly = Polygon(poly_points) point = Point(m, n) return poly.contains(point)
[docs]@dataclass class BiaxialBendingResults: """Class for storing biaxial bending results. :param n: Net axial force :param results: List of ultimate bending result objects """ n: float results: List[UltimateBendingResults] = field(default_factory=list)
[docs] def get_results_lists( self, ) -> Tuple[List[float], List[float]]: """Returns a list and moments about the ``x`` and ``y`` axes. :return: List of axial forces and moments *(mx, my)* """ # build list of results m_x_list = [] m_y_list = [] for result in self.results: m_x_list.append(result.m_x) m_y_list.append(result.m_y) return m_x_list, m_y_list
[docs] def plot_diagram( self, m_scale: float = 1e-6, fmt: str = "o-", **kwargs, ) -> matplotlib.axes.Axes: # type: ignore """Plots a biaxial bending diagram. :param m_scale: Scaling factor to apply to bending moment :param fmt: Plot format string :param kwargs: Passed to :func:`~concreteproperties.post.plotting_context` :return: Matplotlib axes object """ m_x_list, m_y_list = self.get_results_lists() # create plot and setup the plot with plotting_context( title=f"Biaxial Bending Diagram, $N = {self.n:.3e}$", **kwargs ) as ( fig, ax, ): # scale results m_x = np.array(m_x_list) * m_scale m_y = np.array(m_y_list) * m_scale ax.plot(m_x, m_y, fmt) # type: ignore plt.xlabel("Bending Moment $M_x$") plt.ylabel("Bending Moment $M_y$") plt.grid(True) return ax
[docs] @staticmethod def plot_multiple_diagrams_2d( biaxial_bending_results: List[BiaxialBendingResults], labels: Optional[List[str]] = None, m_scale: float = 1e-6, fmt: str = "o-", **kwargs, ) -> matplotlib.axes.Axes: # type: ignore """Plots multiple biaxial bending diagrams in a 2D plot. :param biaxial_bending_results: List of biaxial bending results objects :param labels: List of labels for each biaxial bending diagram, if not provided labels are axial forces :param m_scale: Scaling factor to apply to bending moment :param fmt: Plot format string :param kwargs: Passed to :func:`~concreteproperties.post.plotting_context` :return: Matplotlib axes object """ # create plot and setup the plot with plotting_context(title="Biaxial Bending Diagram", **kwargs) as ( fig, ax, ): idx = 0 # generate default labels if labels is None: labels = [] default_labels = True else: default_labels = False # for each M-N curve for idx, bb_result in enumerate(biaxial_bending_results): m_x_list, m_y_list = bb_result.get_results_lists() # scale results m_x_list = np.array(m_x_list) * m_scale m_y_list = np.array(m_y_list) * m_scale # generate default labels if default_labels: labels.append(f"N = {bb_result.n:.3e}") ax.plot(m_x_list, m_y_list, fmt, label=labels[idx]) # type: ignore plt.xlabel("Bending Moment $M_x$") plt.ylabel("Bending Moment $M_y$") plt.grid(True) # if there is more than one curve show legend if idx > 0: ax.legend(loc="center left", bbox_to_anchor=(1, 0.5)) # type: ignore return ax
[docs] @staticmethod def plot_multiple_diagrams_3d( biaxial_bending_results: List[BiaxialBendingResults], n_scale: float = 1e-3, m_scale: float = 1e-6, fmt: str = "-", ) -> matplotlib.axes.Axes: # type: ignore """Plots multiple biaxial bending diagrams in a 3D plot. :param biaxial_bending_results: List of biaxial bending results objects :param n_scale: Scaling factor to apply to axial force :param m_scale: Scaling factor to apply to bending moment :param fmt: Plot format string :return: Matplotlib axes object """ # make 3d plot fig = plt.figure() ax = plt.axes(projection="3d") # for each curve for bb_result in biaxial_bending_results: m_x_list, m_y_list = bb_result.get_results_lists() # scale results n_list = bb_result.n * n_scale * np.ones(len(m_x_list)) m_x_list = np.array(m_x_list) * m_scale m_y_list = np.array(m_y_list) * m_scale ax.plot3D(m_x_list, m_y_list, n_list, fmt) # type: ignore ax.set_xlabel("Bending Moment $M_x$") ax.set_ylabel("Bending Moment $M_y$") ax.set_zlabel("Axial Force $N$") # type: ignore plt.show() return ax
[docs] def point_in_diagram( self, m_x: float, m_y: float, ) -> bool: """Determines whether or not the combination of bending moments lies within the biaxial bending diagram. :param m_x: Bending moment about the x-axis :param m_y: Bending moment about the y-axis :returns: True, if combination of bendings moments is within the diagram """ # create a polygon from points on diagram poly_points = [] for ult_res in self.results: poly_points.append((ult_res.m_x, ult_res.m_y)) poly = Polygon(poly_points) point = Point(m_x, m_y) return poly.contains(point)
[docs]@dataclass class StressResult: """Class for storing stress results. The lever arm is computed to the elastic centroid. :param concrete_analysis_sections: List of concrete analysis section objects present in the stress analysis, which can be visualised by calling the :meth:`~concreteproperties.analysis_section.AnalysisSection.plot_mesh` or :meth:`~concreteproperties.analysis_section.AnalysisSection.plot_shape` :param concrete_stresses: List of concrete stresses at the nodes of each concrete analysis section :param concrete_forces: List of net forces for each concrete analysis section and its lever arm (``force``, ``d_x``, ``d_y``) :param meshed_reinforcement_sections: List of meshed reinforcement section objects present in the stress analysis :param meshed_reinforcement_stresses: List of meshed reinforcement stresses at the nodes of each meshed reinforcement analysis section :param meshed_reinforcement_forces: List of net forces for each meshed reinforcement analysis section and its lever arm (``force``, ``d_x``, ``d_y``) :param lumped_reinforcement_geometries: List of lumped reinforcement geometry objects present in the stress analysis :param lumped_reinforcement_stresses: List of lumped reinforcement stresses for each lumped geometry :param lumped_reinforcement_strains: List of lumped reinforcement strains for each lumped geometry :param lumped_reinforcement_forces: List of net forces for each lumped reinforcement geometry and its lever arm (``force``, ``d_x``, ``d_y``) """ concrete_section: ConcreteSection concrete_analysis_sections: List[AnalysisSection] concrete_stresses: List[np.ndarray] concrete_forces: List[Tuple[float, float, float]] meshed_reinforcement_sections: List[AnalysisSection] meshed_reinforcement_stresses: List[np.ndarray] meshed_reinforcement_forces: List[Tuple[float, float, float]] lumped_reinforcement_geometries: List[CPGeom] lumped_reinforcement_stresses: List[float] lumped_reinforcement_strains: List[float] lumped_reinforcement_forces: List[Tuple[float, float, float]]
[docs] def plot_stress( self, title: str = "Stress", conc_cmap: str = "RdGy", reinf_cmap: str = "bwr", **kwargs, ) -> matplotlib.axes.Axes: # type: ignore """Plots concrete and steel stresses on a concrete section. :param title: Plot title :param conc_cmap: Colour map for the concrete stress :param reinf_cmap: Colour map for the reinforcement stress :param kwargs: Passed to :func:`~concreteproperties.post.plotting_context` :return: Matplotlib axes object """ with plotting_context( title=title, aspect=True, **dict( kwargs, nrows=1, ncols=3, gridspec_kw={"width_ratios": [1, 0.08, 0.08]} ), ) as (fig, ax): # plot background self.concrete_section.plot_section( background=True, **dict(kwargs, ax=fig.axes[0]) ) # set up the colormaps cmap_conc = cm.get_cmap(name=conc_cmap) cmap_reinf = cm.get_cmap(name=reinf_cmap) # determine minimum and maximum stress values for the contour list # add tolerance for plotting stress blocks conc_sig_min = min([min(x) for x in self.concrete_stresses]) - 1e-12 conc_sig_max = max([max(x) for x in self.concrete_stresses]) + 1e-12 # if there is meshed reinforcement, calculate min and max if self.meshed_reinforcement_stresses: meshed_reinf_sig_min = ( min([min(x) for x in self.meshed_reinforcement_stresses]) - 1e-12 ) meshed_reinf_sig_max = ( max([max(x) for x in self.meshed_reinforcement_stresses]) + 1e-12 ) else: meshed_reinf_sig_min = None meshed_reinf_sig_max = None # if there is lumped reinforcement, calculate min and max if self.lumped_reinforcement_stresses: lumped_reinf_sig_min = min(self.lumped_reinforcement_stresses) lumped_reinf_sig_max = max(self.lumped_reinforcement_stresses) else: lumped_reinf_sig_min = None lumped_reinf_sig_max = None # determine min and max reinforcement stresess if ( meshed_reinf_sig_min and meshed_reinf_sig_max and lumped_reinf_sig_min and lumped_reinf_sig_max ): reinf_sig_min = min(meshed_reinf_sig_min, lumped_reinf_sig_min) reinf_sig_max = max(meshed_reinf_sig_max, lumped_reinf_sig_max) elif meshed_reinf_sig_min and meshed_reinf_sig_max: reinf_sig_min = meshed_reinf_sig_min reinf_sig_max = meshed_reinf_sig_max elif lumped_reinf_sig_min and lumped_reinf_sig_max: reinf_sig_min = lumped_reinf_sig_min reinf_sig_max = lumped_reinf_sig_max else: reinf_sig_min = 0 reinf_sig_max = 0 # set up ticks v_conc = np.linspace(conc_sig_min, conc_sig_max, 15, endpoint=True) v_reinf = np.linspace(reinf_sig_min, reinf_sig_max, 15, endpoint=True) if np.isclose(v_conc[0], v_conc[-1], atol=1e-12): v_conc = 15 ticks_conc = None else: ticks_conc = v_conc if np.isclose(v_reinf[0], v_reinf[-1], atol=1e-12): ticks_reinf = None reinf_tick_same = True else: ticks_reinf = v_reinf reinf_tick_same = False # plot the concrete stresses for idx, sig in enumerate(self.concrete_stresses): # check region has a force if abs(self.concrete_forces[idx][0]) > 1e-8: # create triangulation triang_conc = tri.Triangulation( self.concrete_analysis_sections[idx].mesh_nodes[:, 0], self.concrete_analysis_sections[idx].mesh_nodes[:, 1], self.concrete_analysis_sections[idx].mesh_elements[:, 0:3], # type: ignore ) # plot the filled contour trictr_conc = fig.axes[0].tricontourf( triang_conc, sig, v_conc, cmap=cmap_conc, norm=CenteredNorm() ) # type: ignore # plot a zero stress contour, supressing warning with warnings.catch_warnings(): warnings.filterwarnings( "ignore", message="No contour levels were found within the data range.", ) # set zero stress for neutral axis contour zero_level = 0 if min(sig) > 0: if min(sig) < 1e-3: zero_level = min(sig) + 1e-12 if max(sig) < 0: if max(sig) > -1e-3: zero_level = max(sig) - 1e-12 if min(sig) == 0: zero_level = 1e-12 if max(sig) == 0: zero_level = -1e-12 CS = fig.axes[0].tricontour( triang_conc, sig, [zero_level], linewidths=1, linestyles="dashed", ) # type: ignore # plot the meshed reinforcement stresses trictr_reinf = None for idx, sig in enumerate(self.meshed_reinforcement_stresses): # check region has a force if abs(self.meshed_reinforcement_forces[idx][0]) > 1e-8: # create triangulation triang_reinf = tri.Triangulation( self.meshed_reinforcement_sections[idx].mesh_nodes[:, 0], self.meshed_reinforcement_sections[idx].mesh_nodes[:, 1], self.meshed_reinforcement_sections[idx].mesh_elements[:, 0:3], # type: ignore ) # plot the filled contour trictr_reinf = fig.axes[0].tricontourf( triang_reinf, sig, v_reinf, cmap=cmap_reinf, norm=CenteredNorm() ) # type: ignore # plot a zero stress contour, supressing warning with warnings.catch_warnings(): warnings.filterwarnings( "ignore", message="No contour levels were found within the data range.", ) # set zero stress for neutral axis contour zero_level = 0 if min(sig) > 0: if min(sig) < 1e-3: zero_level = min(sig) + 1e-12 if max(sig) < 0: if max(sig) > -1e-3: zero_level = max(sig) - 1e-12 if min(sig) == 0: zero_level = 1e-12 if max(sig) == 0: zero_level = -1e-12 CS = fig.axes[0].tricontour( triang_reinf, sig, [zero_level], linewidths=1, linestyles="dashed", ) # type: ignore # plot the lumped reinforcement stresses lumped_reinf_patches = [] colours = [] for idx, sig in enumerate(self.lumped_reinforcement_stresses): lumped_reinf_patches.append( mpatches.Polygon( xy=list(self.lumped_reinforcement_geometries[idx].geom.exterior.coords) # type: ignore ) ) colours.append(sig) patch = PatchCollection(lumped_reinf_patches, cmap=cmap_reinf) patch.set_array(colours) if reinf_tick_same: patch.set_clim(vmin=0.99 * v_reinf[0], vmax=1.01 * v_reinf[-1]) else: patch.set_clim(vmin=v_reinf[0], vmax=v_reinf[-1]) fig.axes[0].add_collection(patch) # type: ignore # add the colour bars fig.colorbar( trictr_conc, # type: ignore label="Concrete Stress", format="%.2e", ticks=ticks_conc, cax=fig.axes[1], ) if trictr_reinf: mappable = trictr_reinf else: mappable = patch fig.colorbar( mappable, label="Reinforcement Stress", format="%.2e", ticks=ticks_reinf, cax=fig.axes[2], ) return ax
[docs] def sum_forces( self, ) -> float: """Returns the sum of the internal forces. :return: Sum of internal forces """ force_sum = 0 # sum concrete forces for conc_force in self.concrete_forces: force_sum += conc_force[0] # sum meshed reinf stresses for meshed_reinf_force in self.meshed_reinforcement_forces: force_sum += meshed_reinf_force[0] # sum lumped reinf forces for lumped_reinf_force in self.lumped_reinforcement_forces: force_sum += lumped_reinf_force[0] return force_sum
[docs] def sum_moments( self, ) -> Tuple[float, float, float]: """Returns the sum of the internal moments. :return: Sum of internal moments about each axis and resultant moment (``m_x``, ``m_y``, ``m``) """ moment_sum_x = 0 moment_sum_y = 0 # sum concrete forces for conc_force in self.concrete_forces: moment_sum_x += conc_force[0] * conc_force[2] moment_sum_y += conc_force[0] * conc_force[1] # sum meshed reinf stresses for meshed_reinf_force in self.meshed_reinforcement_forces: moment_sum_x += meshed_reinf_force[0] * meshed_reinf_force[2] moment_sum_y += meshed_reinf_force[0] * meshed_reinf_force[1] # sum lumped reinf forces for lumped_reinf_force in self.lumped_reinforcement_forces: moment_sum_x += lumped_reinf_force[0] * lumped_reinf_force[2] moment_sum_y += lumped_reinf_force[0] * lumped_reinf_force[1] moment_sum = np.sqrt(moment_sum_x * moment_sum_x + moment_sum_y * moment_sum_y) return moment_sum_x, moment_sum_y, moment_sum