concreteproperties.design_codes.AS3600#
- class AS3600[source]#
Bases:
DesignCode
Design code class for Australian standard AS 3600:2018.
Inits the AS3600 class.
Methods
Assigns a concrete section to the design code.
Generates a biaxial bending with capacity factors to AS 3600:2018.
Calculates cracked section properties.
Calculates stresses within the reinforced concrete section assuming a cracked section.
Calculates service stresses within the reinforced concrete section.
Calculates ultimate stresses within the reinforced concrete section.
Calculates stresses within the reinforced concrete section assuming an uncracked section.
Returns the AS 3600:2018 capacity reduction factor (Table 2.2.2).
Returns a concrete material object to AS 3600:2018.
Returns a steel material object.
Returns the gross section properties of the reinforced concrete section.
Returns k_uo for the reinforced concrete cross-section given
theta
.Returns n_ub for the reinforced concrete cross-section given
theta
.Transforms gross section properties.
Performs a moment curvature analysis.
Generates a moment interaction diagram with capacity factors to AS 3600:2018.
Calculates the ultimate bending capacity with capacity factors to AS 3600:2018.
- assign_concrete_section(concrete_section: ConcreteSection)[source]#
Assigns a concrete section to the design code.
- Parameters
concrete_section (
ConcreteSection
) – Concrete section object to analyse
- create_concrete_material(compressive_strength: float, colour: Optional[str] = 'lightgrey') Concrete [source]#
Returns a concrete material object to AS 3600:2018.
Material assumptions:- Density: 2400 kg/m3- Elastic modulus: Interpolated from Table 3.1.2- Service stress-strain profile: Linear with no tension, compressive strength at 0.9 * f’c- Ultimate stress-strain profile: Rectangular stress block, parameters from Cl. 8.1.3- Alpha squash: From Cl. 10.6.2.2- Flexural tensile strength: From Cl. 3.1.1.3- Parameters
compressive_strength (float) – Characteristic compressive strength of concrete at 28 days in megapascals (MPa)
colour (Optional[str]) – Colour of the concrete for rendering
- Raises
ValueError – If compressive_strength is not between 20 MPa and 100 MPa.
- Returns
Concrete material object
- Return type
- create_steel_material(yield_strength: Optional[float] = 500, ductility_class: Optional[str] = 'N', colour: Optional[str] = 'grey') Steel [source]#
Returns a steel material object.
Material assumptions:- Density: 7850 kg/m3- Elastic modulus: 200,000 MPa- Stress-strain profile: Elastic-plastic, fracture strain from Table 3.2.1- Parameters
yield_strength (Optional[float]) – Steel yield strength
ductility_class (Optional[str]) – Steel ductility class (“N” or “L”)
colour (Optional[str]) – Colour of the steel for rendering
- Raises
ValueError – If ductility_class is not N or L
- Returns
Steel material object
- Return type
- capacity_reduction_factor(n_u: float, n_ub: float, n_uot: float, k_uo: float, phi_0: float) float [source]#
Returns the AS 3600:2018 capacity reduction factor (Table 2.2.2).
n_ub
andphi_0
only required for compression,n_uot
only required for tension.- Parameters
n_u (float) – Axial force in member
n_ub (float) – Axial force at balanced point
n_uot (float) – Axial force at ultimate tension load
k_uo (float) – Neutral axis parameter at pure bending
phi_0 (float) – Capacity reduction factor for dominant compression
- Returns
Capacity reduction factor
- Return type
float
- get_k_uo(theta: float) float [source]#
Returns k_uo for the reinforced concrete cross-section given
theta
.- Parameters
theta (float) – Angle (in radians) the neutral axis makes with the horizontal axis (\(-\pi \leq \theta \leq \pi\))
- Returns
Bending parameter k_uo
- Return type
float
- get_n_ub(theta: float) float [source]#
Returns n_ub for the reinforced concrete cross-section given
theta
.- Parameters
theta (float) – Angle (in radians) the neutral axis makes with the horizontal axis (\(-\pi \leq \theta \leq \pi\))
- Returns
Balanced axial force n_ub
- Return type
float
- ultimate_bending_capacity(theta: Optional[float] = 0, n: Optional[float] = 0, phi_0: Optional[float] = 0.6) Tuple[res.UltimateBendingResults, res.UltimateBendingResults, float] [source]#
Calculates the ultimate bending capacity with capacity factors to AS 3600:2018.
- Parameters
theta (Optional[float]) – Angle (in radians) the neutral axis makes with the horizontal axis (\(-\pi \leq \theta \leq \pi\))
n (Optional[float]) – Net axial force
phi_0 (Optional[float]) – Compression dominant capacity reduction factor, see Table 2.2.2(d)
- Returns
Factored and unfactored ultimate bending results objects, and capacity reduction factor (factored_results, unfactored_results, phi)
- Return type
Tuple[
UltimateBendingResults
,UltimateBendingResults
, float]
- moment_interaction_diagram(phi_0: Optional[float] = 0.6, **kwargs) Tuple[res.MomentInteractionResults, res.MomentInteractionResults, List[float]] [source]#
Generates a moment interaction diagram with capacity factors to AS 3600:2018.
- Parameters
phi_0 (Optional[float]) – Compression dominant capacity reduction factor, see Table 2.2.2(d)
kwargs – Keyword arguments passed to
moment_interaction_diagram()
- Returns
Factored and unfactored moment interaction results objects, and list of capacity reduction factors (factored_results, unfactored_results, phis)
- Return type
Tuple[
MomentInteractionResults
,MomentInteractionResults
, List[float]]
- biaxial_bending_diagram(n: Optional[float] = 0, n_points: Optional[int] = 48, phi_0: Optional[float] = 0.6) Tuple[res.BiaxialBendingResults, List[float]] [source]#
Generates a biaxial bending with capacity factors to AS 3600:2018.
- Parameters
n (Optional[float]) – Net axial force
n_points (Optional[int]) – Number of calculation points between the decompression
phi_0 (Optional[float]) – Compression dominant capacity reduction factor, see Table 2.2.2(d)
- Returns
Factored biaxial bending results object and list of capacity reduction factors (factored_results, phis)
- Return type
Tuple[
BiaxialBendingResults
, List[float]]
- calculate_cracked_properties(**kwargs) CrackedResults #
Calculates cracked section properties.
- Parameters
kwargs – Keyword arguments passed to
calculate_cracked_properties()
- Returns
Cracked results object
- Return type
- calculate_cracked_stress(**kwargs) StressResult #
Calculates stresses within the reinforced concrete section assuming a cracked section.
- Parameters
kwargs – Keyword arguments passed to
calculate_cracked_stress()
- Returns
Stress results object
- Return type
- calculate_service_stress(**kwargs) StressResult #
Calculates service stresses within the reinforced concrete section.
- Parameters
kwargs – Keyword arguments passed to
calculate_service_stress()
- Returns
Stress results object
- Return type
- calculate_ultimate_stress(**kwargs) StressResult #
Calculates ultimate stresses within the reinforced concrete section.
- Parameters
kwargs – Keyword arguments passed to
calculate_ultimate_stress()
- Returns
Stress results object
- Return type
- calculate_uncracked_stress(**kwargs) StressResult #
Calculates stresses within the reinforced concrete section assuming an uncracked section.
- Parameters
kwargs – Keyword arguments passed to
calculate_uncracked_stress()
- Returns
Stress results object
- Return type
- get_gross_properties(**kwargs) ConcreteProperties #
Returns the gross section properties of the reinforced concrete section.
- Parameters
kwargs – Keyword arguments passed to
get_gross_properties()
- Returns
Concrete properties object
- Return type
- get_transformed_gross_properties(**kwargs) TransformedConcreteProperties #
Transforms gross section properties.
- Parameters
kwargs – Keyword arguments passed to
get_transformed_gross_properties()
- Returns
Transformed concrete properties object
- Return type
- moment_curvature_analysis(**kwargs) MomentCurvatureResults #
Performs a moment curvature analysis. No reduction factors are applied to the moments.
- Parameters
kwargs – Keyword arguments passed to
moment_curvature_analysis()
- Returns
Moment curvature results object
- Return type