Source code for concreteproperties.design_codes.nzs3101

from __future__ import annotations

from copy import deepcopy
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple

import numpy as np
from rich.live import Live

import concreteproperties.results as res
import concreteproperties.stress_strain_profile as ssp
import concreteproperties.utils as utils
from concreteproperties.design_codes.design_code import DesignCode
from concreteproperties.material import Concrete, SteelBar

if TYPE_CHECKING:
    from concreteproperties.concrete_section import ConcreteSection


[docs]class NZS3101(DesignCode): """Design code class for the New Zealand concrete design standard NZS3101:2006. Also implements the requirements of the NZSEE C5 assessment guidelines for probable strength design. .. note:: Note that this design code currently only supports :class:`~concreteproperties.material.Concrete` and :class:`NZS3101.SteelBarNZ` material objects. Meshed :class:`~concreteproperties.material.Steel` material objects are **not** supported as this falls under the composite structures design code. """ def __init__(self): """Inits the NZS3101 class.""" self.analysis_code = "NZS3101:2006" super().__init__()
[docs] @dataclass class SteelBarNZ(SteelBar): r"""Class for a steel bar material to NZS3101, treated as a lumped circular mass with a constant strain. :param name: Steel bar material name :param steel_grade: Designation of the grade of reinforcement bar to be analysed, included predefined current and historic grades are detailed in the :meth:`NZS3101.create_steel_material` method :param density: Steel bar density (mass per unit volume) :param phi_os: Overstrength factor depending on reinforcement grade (:math:`\phi_{o,f_y}`), refer to NZS3101:2006 CL 2.6.5.5 or NZSEE C5 assessment guidelines C5.4.3 :param stress_strain_profile: Steel bar stress-strain profile :param colour: Colour of the material for rendering """ name: str steel_grade: str density: float phi_os: float stress_strain_profile: ssp.StressStrainProfile colour: str meshed: bool = field(default=False, init=False)
[docs] def assign_concrete_section( self, concrete_section: ConcreteSection, section_type: str = "column", ) -> None: """Assigns a concrete section and the section type for the concrete section to the design code. :param concrete_section: Concrete section object to analyse :param section_type: The type of member being analysed:- - **column** - Analyses assigned concrete section object as a column (or beam) member in accordance with NZS3101:2006 Chapter 9 or 10 as appropriate - **wall** - Analyses assigned concrete section object as a doubly reinforced wall member in accordance with NZS3101:2006 Chapter 11 - **wall_sr_s** - Analyses assigned concrete section object as a singly reinforced wall member in accordance with NZS3101:2006 Chapter 11 for design actions causing bending about the strong axis - **wall_sr_m**- Analyses assigned concrete section object as a singly reinforced wall member in accordance with NZS3101:2006 Chapter 11 for design actions causing bending about the minor axis :raises ValueError: If the concrete section contains meshed reinforcement :raises ValueError: If section type for the analysis of the concrete section is not valid """ # assign concrete sections relevant to each analysis type self.concrete_section = concrete_section self.os_concrete_section = self.create_os_section() self.prob_concrete_section = self.create_prob_section() self.prob_os_concrete_section = self.create_prob_section(os_design=True) # assign section type self.section_type = section_type # check to make sure there are no meshed reinforcement regions if self.concrete_section.reinf_geometries_meshed: raise ValueError( f"Meshed reinforcement is not supported in the {self.analysis_code} " f"code" ) # check section type is valid if not self.section_type.lower() in [ "column", "wall", "wall_sr_s", "wall_sr_m", ]: raise ValueError( f"The specified section type of '{self.section_type}' should be either " f"'column', 'wall', 'wall_sr_s' or 'wall_sr_m' for a " f"{self.analysis_code} code analysis" )
[docs] def assign_analysis_section( self, analysis_type: str = "nom_chk", ) -> ConcreteSection: """Assigns the appropriate concrete section to be analysed depending on the analysis type requested. :param analysis_type: The type of cross section analysis to undertake on the defined concrete section, by default a normal nominal strength design check is undertaken, refer to :meth:`NZS3101.capacity_reduction_factor` for further information on analysis types. :raises ValueError: If analysis type is not valid :return: Returns the appropriate concrete section object for the analysis depending on the analysis type """ # determine the section to analyse if analysis_type.lower() in ["nom_chk", "cpe_chk"]: analysis_section = self.concrete_section elif analysis_type.lower() in ["os_chk"]: analysis_section = self.os_concrete_section elif analysis_type.lower() in ["prob_chk"]: analysis_section = self.prob_concrete_section elif analysis_type.lower() in ["prob_os_chk"]: analysis_section = self.prob_os_concrete_section else: # ensure analysis_type is bound raise ValueError( f"The specified analysis type of '{analysis_type}' should be either " f"'nom_chk', 'cpe_chk', 'os_chk', 'prob_chk' or 'prob_os_chk'" f"for a {self.analysis_code} code analysis" ) return analysis_section
[docs] def e_conc(self, compressive_strength: float, density: float = 2300) -> float: r"""Calculates Youngs Modulus (:math:`E_c`) for concrete in accordance with NZS3101:2006 CL 5.2.3(b). :math:`E_c=\displaystyle{4700\sqrt{f'_c}\frac{\rho}{2300}}` :param compressive_strength: 28 day compressive concrete strength (MPa) :param density: Concrete density :math:`\rho` in accordance with NZS3101:2006 CL 5.2.2, defaults to 2300 kg/m\ :sup:`3` for normal weight concrete :return: :math:`E_c`, Youngs Modulus (MPa) """ # Check low and high limit on density in NZS3101:2006 CL 5.2.2 for E_c equation # to be valid low_limit = 1800 high_limit = 2800 # check upper and lower concrete strengths self.check_density_limits(density, low_limit, high_limit) E_c = (4700 * (compressive_strength**0.5)) * (density / 2300) ** 1.5 return E_c
[docs] def check_density_limits( self, density: float, low_limit: float, high_limit: float ) -> None: r"""Checks that the density is within the bounds outlined within NZS3101:2006 CL 5.2.2 for the elastic modulus expression within NZS3101:2006 CL 5.2.3(b) to be valid. :param density: Concrete density :math:`\rho` in accordance with NZS3101:2006 CL 5.2.2 :param low_limit: Lower limit for density from NZS3101:2006 CL 5.2.2 :param high_limit: Upper limit for density from NZS3101:2006 CL 5.2.2 :raises ValueError: If density is outside of the limits within NZS3101:2006 CL 5.2.2 """ if not (low_limit <= density <= high_limit): raise ValueError( f"The specified concrete density of {density}kg/m^3 is not within the " f"bounds of {low_limit}kg/m^3 & {high_limit}kg/m^3 for the " f"{self.analysis_code} Elastic Modulus eqn to be applicable" )
[docs] def alpha_1(self, compressive_strength: float) -> float: r"""Scaling factor relating the nominal 28 day concrete compressive strength to the effective concrete compressive strength used for design purposes within the concrete stress block. For an equivalent rectangular compressive stress block it relates the 28 day concrete compressive strength (:math:`f'_c`) to the average concrete compressive design strength (:math:`f_{ave}`). A function of the concrete compressive strength. :math:`\quad\alpha_1=\displaystyle{\frac{f_{ave}}{f'_c}}` Where:- :math:`\quad\alpha_1=0.85-0.004(f'_c-55)\quad:0.75\leq\alpha_1\leq0.85` :param compressive_strength: 28 day compressive design strength (MPa) :return: :math:`\alpha_1` factor """ if compressive_strength <= 55: alpha_1 = 0.85 else: alpha_1 = max(0.75, 0.85 - 0.004 * (compressive_strength - 55)) return alpha_1
[docs] def beta_1(self, compressive_strength: float) -> float: r"""Scaling factor relating the depth of an equivalent rectangular compressive stress block (:math:`a`) to the depth of the neutral axis (:math:`c`). A function of the concrete compressive strength. :math:`\quad\beta_1=\displaystyle{\frac{a}{c}}` Where:- :math:`\quad\beta_1=0.85-0.008(f'_c-30)\quad:0.65\leq\beta_1\leq0.85` :param compressive_strength: 28 day compressive design strength (MPa) :return: :math:`\beta_1` factor """ if compressive_strength <= 30: beta_1 = 0.85 else: beta_1 = max(0.65, 0.85 - 0.008 * (compressive_strength - 30)) return beta_1
[docs] def lamda(self, density: float) -> float: r"""Modification factor reflecting the reduced mechanical properties of lightweight concrete relative to normal weight concrete of the same compression strength. :math:`\quad\lambda=0.4+\displaystyle{\frac{0.6\rho}{2200}}\leq1.0` :param density: Saturated surface dry density of concrete material :return: :math:`\lambda` factor """ lamda = min(0.4 + 0.6 * density / 2200, 1) return lamda
[docs] def concrete_tensile_strength( self, compressive_strength: float, density: float = 2300, prob_design: bool = False, ) -> float: r"""Calculates the lower characteristic tensile strength of concrete (:math:`f_t`) in accordance with NZS3101:2006 CL 5.2.4, or calculates the probable tensile strength of concrete in accordance with NZSEE C5 assessment guidelines C5.4.2.4. For design to NZS3101:2006:- :math:`\quad f_t=0.38\lambda({f'_c})^{0.5}` For design to NZSEE C5 assessment guidelines:- :math:`\quad f_{ct}=0.55({f'_{cp}})^{0.5}` :param compressive_strength: 28 day compressive design strength (MPa) :param density: Saturated surface dry density of concrete material :param prob_design: True if the probable tensile strength of concrete is to be calculated in accordance with NZSEE C5 assessment guidelines :return: Lower characteristic (:math:`f_t`) or probable (:math:`f_{ct}`) tensile strength of concrete """ if prob_design: prob_compressive_strength = self.prob_compressive_strength( compressive_strength ) f_t = 0.55 * np.sqrt(prob_compressive_strength) else: f_t = 0.38 * self.lamda(density) * np.sqrt(compressive_strength) return f_t
[docs] def modulus_of_rupture( self, compressive_strength: float, density: float = 2300, ) -> float: r"""Calculates the average modulus of rupture of concrete (:math:`f_r`) in accordance with NZS3101:2006 CL 5.2.5 for deflection calculations. :math:`\quad f_r=0.6\lambda({f'_c})^{0.5}` :param compressive_strength: 28 day compressive design strength (MPa) :param density: Saturated surface dry density of concrete material :return: Modulus of rupture (:math:`f_r`) """ f_r = 0.6 * self.lamda(density) * np.sqrt(compressive_strength) return f_r
[docs] def prob_compressive_strength(self, compressive_strength: float) -> float: """Calculate the probable compressive strength of concrete in accordance with NZSEE C5 assessement guidelines C5.4.2.2. Taken as the nominal 28-day compressive strenght of the concrete specified for the original construciton, multiplied by 1.5 for strengths less than or equal to 40 MPa, and 1.4 for strengths greater than 40 MPa. :param compressive_strength: 28 day compressive design strength (MPa) :return: Probable comopressive strength of concrete (:math:`f'_{cp}`) """ # convert lower characteristic compressive strength to probable concrete # compressive strength mult_compressive_strength = 1.5 if compressive_strength <= 40 else 1.4 f_cp = mult_compressive_strength * compressive_strength return f_cp
[docs] def concrete_capacity( self, os_design: bool = False, prob_design: bool = False, add_compressive_strength: float = 15, ) -> float: r"""Function to return the nominal, overstrength or probable concrete capacity capacity of a concrete section. - Note for a column section type outputs the unfactored concrete yield force for a column member designed in accordance with NZS3101:2006 Chapter 10 based on net concrete area:- :math:`\quad N_c = \alpha_1A_nf'_c` - Note for a wall section type outputs the unfactored concrete yield force for a doubly or singly reinforced wall member designed in accordance with NZS3101:2006 Chapter 11 based on gross concrete area:- :math:`\quad N_c = A_gf'_c` :param os_design: True if an overstrength capacity of a concrete section is required, then the material properties for concrete are scaled to reflect the likely maximum material strength properties :param prob_design: True if the probable capacity of a concrete section is required, then the material properties for concrete and lumped reinforcement are scaled to reflect the probable material strength properties :param add_compressive_strength: The increase in compressive strength of the specified 28 day compressive strength of concrete to reflect the likely maximum material strength, defaults to an additional 15 MPa as per NZS3101:2006 CL 2.6.5.5(c) :raises ValueError: If section type for the analysis of the concrete section is not valid :return: Nominal, overstrength or probable concrete yield force (N) for the defined section/member type provided """ # initiate force variable force = 0 # loop through all concrete geometries for conc_geom in self.concrete_section.concrete_geometries: # calculate net concrete area & compressive strength concrete_area = conc_geom.calculate_area() compressive_strength = ( conc_geom.material.ultimate_stress_strain_profile.get_compressive_strength() ) # scale concrete compressive strength for overstrength if specified if prob_design: compressive_strength = self.prob_compressive_strength( compressive_strength ) elif os_design: compressive_strength += add_compressive_strength if self.section_type.lower() in ["column"]: # calculate cumulative net concrete force force += ( self.alpha_1(compressive_strength) * concrete_area * compressive_strength ) elif self.section_type.lower() in ["wall", "wall_sr_s", "wall_sr_m"]: # calculate gross concrete area (area of concrete & reinforcement) for steel_geom in self.concrete_section.reinf_geometries_lumped: for bar_hole in conc_geom.geom.interiors: if steel_geom.geom.exterior.equals(bar_hole): # type: ignore concrete_area += steel_geom.calculate_area() # calculate cumulative gross concrete force force += concrete_area * compressive_strength else: # ensure section_type is bound raise ValueError( f"The specified section type of '{self.section_type}' should be " f"either 'column', 'wall', 'wall_sr_s' or 'wall_sr_m' for a " f"{self.analysis_code} code analysis" ) return force
[docs] def steel_capacity( self, os_design: bool = False, prob_design: bool = False ) -> float: """Function to return the nominal, overstrength or probable steel reinforcement capacity of a concrete section. :param os_design: True if an overstrength capacity of a concrete section is required, then the material properties for lumped reinforcement are scaled to reflect the likely maximum material strength properties :param prob_design: True if the probable capacity of a concrete section is required, then the material properties for concrete and lumped reinforcement are scaled to reflect the probable material strength properties :raises ValueError: If concrete section contains a steel material that is not :class:`NZS3101.SteelBarNZ` :return: Nominal, overstrength or probable steel yield force (N) """ # Retrieve predefined names of probable strength based materials _, _, prob_properties = self.predefined_steel_materials() # initiate force variable force = 0 # loop through all steel geometries for steel_geom in self.concrete_section.reinf_geometries_lumped: # check all materials are SteelBarNZ, else following code will fail if not isinstance(steel_geom.material, self.SteelBarNZ): raise ValueError("Material must be a SteelBarNZ") # calculate reinforcement area & yield strength & steel_grade steel_area = steel_geom.calculate_area() yield_strength = ( steel_geom.material.stress_strain_profile.get_yield_strength() ) steel_grade = steel_geom.material.steel_grade # establish scaling factor for overstrength if specified if os_design: mult_yield_strength = steel_geom.material.phi_os elif prob_design and steel_grade not in prob_properties: mult_yield_strength = 1.08 else: mult_yield_strength = 1.0 # calculate cumulative reinforcement force force += steel_area * yield_strength * mult_yield_strength return force
[docs] def max_comp_strength( self, cpe_design: bool = False, os_design: bool = False, prob_design: bool = False, ) -> float: r"""Function to return the nominal, overstrength or probable axial load compressive strength of a concrete section when the load is applied with zero eccentricity. For column members, the maximum design load in compression is as follows:- For non-capacity design situations, refer to NZS3101:2006 CL 10.3.4.2:- :math:`\quad\displaystyle{\frac{N^*}{\phi} < 0.85N_{n,max}}` For capacity design situations, refer to NZS3101:2006 CL 10.4.4:- :math:`\quad N^*_o < 0.7N_{n,max}` Where:- :math:`\quad N_{n,max} = \alpha_1f'_c(A_g-A_{st})+f_yA_{st}` For doubly reinforced wall members, the maximum design load in compression is as follows:- For non-capacity design situations, refer to NZS3101:2006 CL 11.3.1.6:- :math:`\quad\displaystyle{\frac{N^*}{\phi} < 0.3A_gf'_c}` For ductile wall design situations within potential plastic regions, refer to NZS3101:2006 CL 11.4.1.1:- :math:`\quad N^*_o < 0.3A_gf'_c` For singly reinforced wall members, the maximum design load in compression depends on the axis the design actions are causing bending about:- .. warning:: Note singly reinforced walls are only allowed in nominally ductile structures designed in accordance with NZS3101:2006. Refer NZS3101:2006 Chapter 2 & 11 for other limitations on the use of singly reinforced walls. Note because of the different maximum axial compression load limits and strength reduction factors for singly reinforced walls depending upon the bending axis, care should be taken to only analyse a singly reinforced wall member about the appropriate axis. Engineering judgement should be exercised when analysing a singly reinforced wall about non-principal axes. For design situations where the design actions cause bending about the strong axis of a singly reinforced wall, refer to NZS3101:2006 CL 11.3.1.6:- :math:`\quad N^* < 0.015A_gf'_c` For design situations where the design actions cause bending about the minor axis of a singly reinforced wall, refer to NZS3101:2006 CL 11.3.5:- :math:`\quad N^* < 0.06A_gf'_c` :param cpe_design: True if the capacity protected element capacity of a concrete section is required (i.e. design capacity being checked against O/S actions) :param os_design: True if the overstrength capacity of a concrete section is required, then the material properties for concrete and lumped reinforcement are scaled to reflect the likely maximum material strength properties :param prob_design: True if the probable capacity of a concrete section is required, then the material properties for concrete and lumped reinforcement are scaled to reflect the probable material strength properties :return: Returns the nominal, overstrength or probable axial load compressive strength of a concrete section :math:`N_{n,max}` """ # concrete capacity conc_capacity = self.concrete_capacity(os_design, prob_design) if self.section_type.lower() in ["column"]: # Calculate maximum axial compression strength for a column member n_n_max = self.steel_capacity(os_design, prob_design) + conc_capacity if cpe_design: max_comp = 0.7 * n_n_max else: max_comp = 0.85 * n_n_max elif self.section_type.lower() in ["wall"]: # Calculate maximum axial compression strength for a wall member max_comp = 0.3 * conc_capacity elif self.section_type.lower() in ["wall_sr_s"]: # Calculate maximum axial compression strength for a singly reinf wall # member about strong axis max_comp = 0.015 * conc_capacity elif self.section_type.lower() in ["wall_sr_m"]: # Calculate maximum axial compression strength for a singly reinf wall # member about minor axis max_comp = 0.06 * conc_capacity return max_comp
[docs] def max_ten_strength( self, os_design: bool = False, prob_design: bool = False ) -> float: r"""Function to return the nominal axial load tension strength of a concrete section when the load is applied with zero eccentricity. :math:`\quad N_{t,max} = f_yA_{st}` :param os_design: True if an overstrength capacity of a concrete section is required, then the material properties for concrete and lumped reinforcement are scaled to reflect the likely maximum material strength properties :param prob_design: True if the probable capacity of a concrete section is required, then the material properties for concrete and lumped reinforcement are scaled to reflect the probable material strength properties :return: Returns the nominal, overstrength or probable axial tension strength of a concrete section :math:`N_{t,max}` """ # Calculate maximum axial tension strength max_ten = self.steel_capacity(os_design, prob_design) return max_ten
[docs] def check_axial_limits( self, n_design: float, phi: float, cpe_design: bool = False, os_design: bool = False, prob_design: bool = False, n_scale: float = 1e-3, ) -> None: r"""Checks that the specified axial load is within the maximum tensile and compressive capacity of the concrete cross section. :param n_design: Axial design force (:math:`N^*`) :param phi: Strength reduction factor :math:`\phi` :param cpe_design: True if the capacity protected element capacity of a concrete section is required (i.e. design capacity being checked against O/S actions) :param os_design: True if the overstrength capacity of a concrete section is required, then the material properties for concrete and lumped reinforcement are scaled to reflect the likely maximum material strength properties :param prob_design: True if the probable capacity of a concrete section is required, then the material properties for concrete and lumped reinforcement are scaled to reflect the probable material strength properties :param n_scale: Scaling factor to apply to axial load :raises ValueError: If the supplied axial load is less than or greater than the the tensile or compressive strength of a concrete section """ # determine NZS3101:2006 maximum tension and compression capacity max_ten = -self.max_ten_strength(os_design, prob_design) max_comp = self.max_comp_strength(cpe_design, os_design, prob_design) # compare to axial load if n_design < phi * max_ten: raise ValueError( f"The specified axial load of {n_design*n_scale:.2f} kN, is less than " f"the tension capacity of the concrete section, phiN_t = " f"{phi*max_ten*n_scale:.2f} kN" ) elif n_design > phi * max_comp: raise ValueError( f"The specified axial load of {n_design*n_scale:.2f} kN, is greater " f"than the compression capacity of the concrete section, phiN_c = " f"{phi*max_comp*n_scale:.2f} kN" )
[docs] def check_f_y_limit(self) -> None: """Checks that the specified steel reinforcement strengths for all defined steel geometries comply with NZS3101:2006 CL 5.3.3. .. note:: Note this check does not apply to predefined steel materials based on probable strength properties. :raises ValueError: If concrete section contains a steel material that is not :class:`NZS3101.SteelBarNZ` :raises ValueError: If characteristic steel reinforcement yield strength is greater than the 500MPa limit in NZS3101:2006 CL 5.3.3 """ # Retrieve predefined names of probable strength based materials _, _, prob_properties = self.predefined_steel_materials() # Upper bound yield strength f_y_upper = 500 # loop through all steel geometries for steel_geom in self.concrete_section.reinf_geometries_lumped: # check all materials are SteelBarNZ, else following code will fail if not isinstance(steel_geom.material, self.SteelBarNZ): raise ValueError("Material must be a SteelBarNZ") # calculate defined steel grade & yield strength steel_grade = steel_geom.material.steel_grade yield_strength = ( steel_geom.material.stress_strain_profile.get_yield_strength() ) if steel_grade not in prob_properties: if yield_strength > f_y_upper: raise ValueError( f"Steel yield strength for '{steel_geom.material.name}' " f"material must be less than {f_y_upper} MPa for the " f"{self.analysis_code} code, {yield_strength:.0f} MPa was " f"specified for this material" )
[docs] def check_f_c_limits(self, pphr_class: str) -> None: """Checks that a valid Potential Plastic Hinge Region (PPHR) classification has been specified, and that the specified compressive strengths for all defined concrete geometries comply with NZS3101:2006 CL 5.2.1 for the specified PPHR classification. :param pphr_class: Potential Plastic Hinge Region (PPHR) classification, **NDPR**/**LDPR**/**DPR**. - **NDPR** = Nominally Ductile Plastic Region - **LDPR** = Limited Ductile Plastic Region - **DPR** = Ductile Plastic Region :raises ValueError: If specified Potential Plastic Hinge Region (PPHR) classification is not NDPR, LDPR or DPR :raises ValueError: If specified compressive strength for a concrete geometry is not between 20 MPa and 100 MPa for NDPR PPHR's, or is not between 20 MPa and 70 MPa for LDPR or DPR PPHR's """ # Lower bound compressive strength f_c_lower = 20 # Upper bound compressive strength & check inputs within acceptable bounds if pphr_class.upper() in ["NDPR"]: f_c_upper = 100 elif pphr_class.upper() in ["LDPR", "DPR"]: f_c_upper = 70 else: raise ValueError( f"The specified PPHR class specified ({pphr_class}) should be NDPR, " f"LDPR or DPR for the {self.analysis_code} code, {pphr_class} was " f"specified" ) # loop through all concrete geometries for conc_geom in self.concrete_section.concrete_geometries: # calculate compressive strength compressive_strength = ( conc_geom.material.ultimate_stress_strain_profile.get_compressive_strength() ) if not (f_c_lower <= compressive_strength <= f_c_upper): raise ValueError( f"Concrete compressive strength for '{conc_geom.material.name}' " f"material must be between {f_c_lower} MPa & {f_c_upper} MPa for a " f"{pphr_class} PPHR for the {self.analysis_code} code, " f"{compressive_strength:.0f} MPa was specified for this material" )
[docs] def create_concrete_material( self, compressive_strength: float, ultimate_strain: float = 0.003, density: float = 2300, colour: str = "lightgrey", ) -> Concrete: r"""Returns a concrete material object to NZS3101:2006. .. admonition:: Material assumptions - *Density*: Defaults to 2300 kg/m\ :sup:`3` unless supplied as user input - *Elastic modulus*: Calculated from NZS3101:2006 Eq. 5-1 - *Serviceability stress-strain profile*: Linear with no tension - *Ultimate stress-strain profile*: Rectangular stress block, parameters from NZS3101:2006 CL 7.4.2.7, maximum compressive strain of 0.003 - *Lower characteristic tensile strength of concrete*: Calculated from NZS3101:2006 Eq. 5-2 :param compressive_strength: 28 day compressive design strength (MPa) :param ultimate_strain: Maximum concrete compressive strain at crushing of the concrete for design :param density: Saturated surface dry density of concrete material :param colour: Colour of the concrete for rendering, defaults to 'lightgrey' :return: Concrete material object """ # create concrete name name = ( f"{compressive_strength:.0f} MPa Conc [{density:.0f} kg/m$^{{{3}}}$] " f"\n({self.analysis_code})" ) # calculate elastic modulus elastic_modulus = self.e_conc(compressive_strength, density) # calculate rectangular stress block parameters alpha_1 = self.alpha_1(compressive_strength) beta_1 = self.beta_1(compressive_strength) # calculate concrete tensile strength in accordance with NZS3101:2006 CL 5.2.4 concrete_tensile_strength = self.concrete_tensile_strength( compressive_strength, density ) return Concrete( name=name, density=density, stress_strain_profile=ssp.ConcreteLinearNoTension( elastic_modulus=elastic_modulus, ultimate_strain=ultimate_strain, compressive_strength=compressive_strength, ), ultimate_stress_strain_profile=ssp.RectangularStressBlock( compressive_strength=compressive_strength, alpha=alpha_1, gamma=beta_1, ultimate_strain=ultimate_strain, ), flexural_tensile_strength=concrete_tensile_strength, colour=colour, )
[docs] def predefined_steel_materials( self, ) -> Tuple[Dict, List[str], List[str]]: r"""Returns a list of predefined material properties for steel grades for design to NZS3101:2006 & NZSEE C5 assessment guidelines. Refer to :meth:`NZS3101.create_steel_material` for details of predefined steel grades. :return: Returns :class:`dict` with standard predefined steel material properties based on current steel grade 300E & 500E material properties in accordance with NZS3101:2006, and based on historic steel grade material properties in accordance with NZSEE C5 assessment guidelines. Returns :class:`list` with predefined material grades that have been defined on characteristic strength material properties and :class:`list` of predefined material grades that have been defined based on probable strength material properties. .. admonition:: Dictionary keys +------------+--------------------------------------------------------------+ | Dict key | Description | +============+==============================================================+ | 1 | Charateristic yield strength (:math:`f_y`) | | | or probable yield strength (:math:`f_{yp}`) | +------------+--------------------------------------------------------------+ | 2 | Fracture strain (:math:`\varepsilon_{su}`) | +------------+--------------------------------------------------------------+ | 3 | Overstrength factor (:math:`\phi_{o,f_y}` or :math:`\phi_o`) | | | (note if probable strength based material | | | property is specified then the true O/S factor to be applied | | | against the characteristic yield strength is 1.08 times this | | | value). | +------------+--------------------------------------------------------------+ | 4 | **True** if probable strength based yield strength & | | | overstrength factor. **False** if lower characteristic | | | strength based yield strength & overstrength factor. | +------------+--------------------------------------------------------------+ """ # Create dictionary with predefined steel grades properties_dict = { "pre_1945": {1: 280.0, 2: 0.1, 3: 1.25, 4: True}, "33": {1: 280.0, 2: 0.1, 3: 1.25, 4: True}, "40": {1: 324.0, 2: 0.15, 3: 1.25, 4: True}, "275": {1: 324.0, 2: 0.15, 3: 1.25, 4: True}, "hy60": {1: 455.0, 2: 0.12, 3: 1.5, 4: True}, "380": {1: 455.0, 2: 0.12, 3: 1.5, 4: True}, "430": {1: 464.0, 2: 0.12, 3: 1.25, 4: True}, "300": {1: 324.0, 2: 0.15, 3: 1.25, 4: True}, "500n": {1: 500.0, 2: 0.05, 3: 1.5, 4: True}, "500": {1: 540.0, 2: 0.10, 3: 1.25, 4: True}, "cd_mesh": {1: 600.0, 2: 0.015, 3: 1.2, 4: True}, "duc_mesh": {1: 540.0, 2: 0.03, 3: 1.2, 4: True}, "300e": {1: 300.0, 2: 15 / 100, 3: 1.35, 4: False}, "500e": {1: 500.0, 2: 10 / 100, 3: 1.35, 4: False}, } # list to store predefined probable strength based steel grades prob_properties = [] # list to store predefined characteristic strength based steel grades nom_properties = [] # Create list of probable strength based and nominal strength based steel grades for properties in properties_dict: if properties_dict[properties][4]: prob_properties.append(properties) else: nom_properties.append(properties) return properties_dict, nom_properties, prob_properties
[docs] def create_steel_material( self, steel_grade: Optional[str] = None, yield_strength: Optional[float] = None, fracture_strain: Optional[float] = None, phi_os: Optional[float] = None, colour: str = "red", ) -> NZS3101.SteelBarNZ: r"""Returns a steel material object specific to the NZS3101:2006 code. .. admonition:: Material assumptions - *Density*: 7850 kg/m\ :sup:`3` - *Elastic modulus*: 200000 MPa - *Stress-strain profile*: Elastic-plastic, fracture strain :math:`\varepsilon_{su}` from AS/NZS4671 Table 7.2(A) or NZSEE C5 assessment guidelines (for historic reinforcement grades) :param steel_grade: Designation of the grade of reinforcement bar to be analysed, included predefined current and historic grades are as follows:- .. note:: By using a valid steel grade designation the required input parameters are initiated with the required values for current reinforcement grades from the AS/NZS4671 standard or for historic grades from the NZSEE C5 assessment guidelines. Note user may overwrite any parameter of a predefined material by providing that parameter as input to :meth:`NZS3101.create_steel_material`. Note if no predefined steel grade is provided, a steel grade name of **'user_' + yield strength** is utilised. .. admonition:: NZS3101:2006 & NZSEE C5 asessment guidelines predefined steel materials **NZS3101:2006 characteristic yield strength based predefined materials** - **300e** - Use for design to NZS3101:2006 provisions - Characteristic yield strength :math:`f_y` = 300 MPa - Fracture strain :math:`\varepsilon_{su}` = 15% or 0.15 - Overstrength factor :math:`\phi_{o,f_y}` = 1.35 - **500e** - Use for design to NZS3101:2006 provisions - Characteristic yield strength :math:`f_y` = 500 MPa - Fracture strain :math:`\varepsilon_{su}` = 10% or 0.10 - Overstrength factor :math:`\phi_{o,f_y}` = 1.35 **NZSEE C5 guidelines probable yield strength based predefined materials** - **pre_1945** - Use for probable strength design to NZSEE C5 assessment guidelines - Probable yield strength :math:`f_{yp}` = 280 MPa - Fracture strain :math:`\varepsilon_{su}` = 10% or 0.10 - Overstrength factor :math:`\phi_{f_o}` = 1.25 - **33** - Use for probable strength design to NZSEE C5 assessment guidelines - Probable yield strength :math:`f_{yp}` = 280 MPa - Fracture strain :math:`\varepsilon_{su}` = 10% or 0.10 - Overstrength factor :math:`\phi_{f_o}` = 1.25 - **40** - Use for probable strength design to NZSEE C5 assessment guidelines - Probable yield strength :math:`f_{yp}` = 324 MPa - Fracture strain :math:`\varepsilon_{su}` = 15% or 0.15 - Overstrength factor :math:`\phi_{f_o}` = 1.25 - **275** - Use for probable strength design to NZSEE C5 assessment guidelines - Probable yield strength :math:`f_{yp}` = 324 MPa - Fracture strain :math:`\varepsilon_{su}` = 15% or 0.15 - Overstrength factor :math:`\phi_{f_o}` = 1.25 - **hy60** - Use for probable strength design to NZSEE C5 assessment guidelines - Probable yield strength :math:`f_{yp}` = 455 MPa - Fracture strain :math:`\varepsilon_{su}` = 12% or 0.12 - Overstrength factor :math:`\phi_{f_o}` = 1.5 - **380** - Use for probable strength design to NZSEE C5 assessment guidelines - Probable yield strength :math:`f_{yp}` = 455 MPa - Fracture strain :math:`\varepsilon_{su}` = 12% or 0.12 - Overstrength factor :math:`\phi_{f_o}` = 1.5 - **430** - Use for probable strength design to NZSEE C5 assessment guidelines - Probable yield strength :math:`f_{yp}` = 464 MPa - Fracture strain :math:`\varepsilon_{su}` = 12% or 0.12 - Overstrength factor :math:`\phi_{f_o}` = 1.25 - **300** - Use for probable strength design to NZSEE C5 assessment guidelines - Probable yield strength :math:`f_{yp}` = 324 MPa - Fracture strain :math:`\varepsilon_{su}` = 15% or 0.15 - Overstrength factor :math:`\phi_{f_o}` = 1.25 - **500n** - Use for probable strength design to NZSEE C5 assessment guidelines - Probable yield strength :math:`f_{yp}` = 500 MPa - Fracture strain :math:`\varepsilon_{su}` = 5% or 0.05 - Overstrength factor :math:`\phi_{f_o}` = 1.5 - **500** - Use for probable strength design to NZSEE C5 assessment guidelines - Probable yield strength :math:`f_{yp}` = 540 MPa - Fracture strain :math:`\varepsilon_{su}` = 10% or 0.10 - Overstrength factor :math:`\phi_{f_o}` = 1.25 - **cd_mesh** - Use for probable strength design to NZSEE C5 assessment guidelines - Probable yield strength :math:`f_{yp}` = 600 MPa - Fracture strain :math:`\varepsilon_{su}` = 1.5% or 0.015 - Overstrength factor :math:`\phi_{f_o}` = 1.2 - **duc_mesh** - Use for probable strength design to NZSEE C5 assessment guidelines - Probable yield strength :math:`f_{yp}` = 500 MPa - Fracture strain :math:`\varepsilon_{su}` = 3% or 0.03 - Overstrength factor :math:`\phi_{f_o}` = 1.2 :param yield_strength: Steel characteristic yield strength (MPa) - Note for a predefined steel grade based on probable strength properties this is interpreted as the probable yield strength. - Note for a user defined steel grade, this is **always** entered on the basis of a characteristic yield strength, even if undertaking a probable strength based analysis. The analysis will internally scale the characteristic yield stress by 1.08 as per NZSEE C5 assessment guidelines C5.4.3. :param fracture_strain: Lower bound tensile strain (:math:`\varepsilon_{su}`), based on characteristic uniform elongation limit from AS/NZS4671 Table 7.2(A) or NZSEE C5 assessment guidelines Table C5.4. :param phi_os: Overstrength factor depending on reinforcement grade (:math:`\phi_{o,f_y}` or :math:`\phi_o`), refer to NZS3101:2006 CL 2.6.5.5, or for a probable strength assessment to the NZSEE C5 assessment guidelines refer to NZSEE C5 Table C5.4. :param colour: Colour of the steel for rendering, if user does not provide a value, characteristic strength based materials will be rendered as red, and probable strength based materials will be rendered as blue. :raises Exception: If a predefined steel grade is not provided and the required material properties have not been provided. For creating a user defined steel material, values for **yield_strength**, **fracture_strain** & **phi_os** are required to define a valid user defined material. :return: Steel bar material object """ # Populate dictionary with predefined material properties ( properties_dict, nom_properties, prob_properties, ) = self.predefined_steel_materials() # Create list of all predefined steel materials pre_def_properties = [key.lower() for key in properties_dict.keys()] if steel_grade is None or steel_grade.lower() not in pre_def_properties: # check if all user defined parameters are provided if yield_strength is None or fracture_strain is None or phi_os is None: raise Exception( f"A predefined steel grade has not been provided, to create a user " f"defined steel material a yield strength, fracture strain and " f"overstrength factor are required to be specified.\n Valid " f"predefined Characteristic strength based steel grades are " f"{nom_properties}, refer AS/NZS4671\n Valid predefined Probable " f"strength based steel grades are {prob_properties}, refer NZSEE " f"C5 assessment guidelines" ) elif steel_grade.lower() in pre_def_properties: # initiate predefined properties unless there is a user defined property if yield_strength is None: yield_strength = properties_dict[steel_grade.lower()][1] if fracture_strain is None: fracture_strain = properties_dict[steel_grade.lower()][2] if phi_os is None: phi_os = properties_dict[steel_grade.lower()][3] # create steel reinforcement name name = f"{yield_strength:.0f} MPa Steel\n({self.analysis_code})" # create steel grade name if not provided if steel_grade is None: steel_grade = f"user_{yield_strength:.0f}" # define density density = 7850 # define elastic modulus elastic_modulus = 200_000 # change colour if predefined probable strength based steel grade if steel_grade.lower() in prob_properties and colour in ["red"]: colour = "steelblue" return NZS3101.SteelBarNZ( name=name, steel_grade=steel_grade, density=density, phi_os=phi_os, # type: ignore stress_strain_profile=ssp.SteelElasticPlastic( yield_strength=yield_strength, # type: ignore elastic_modulus=elastic_modulus, fracture_strain=fracture_strain, # type: ignore ), colour=colour, )
[docs] def capacity_reduction_factor( self, analysis_type: str ) -> Tuple[float, bool, bool, bool]: r"""Returns the appropriate NZS3101:2006 or NZSEE C5 assessment guidelines capacity reduction factor dependant on the type of analysis specified. Refer to NZS3101:2006 CL 2.3.2.2 or NZSEE C5 assessment guidelines C5.5.1.4. :param analysis_type: The type of cross section analysis to undertake on the defined concrete section, by default a normal nominal strength design check is undertaken:- - **nom_chk** - Nominal strength design check. Returns the normal nominal strength section design capacity, i.e. undertakes the cross section analysis based on the following assumptions:- - Using a strength reduction factor of :math:`\phi` = 0.85 in accordance with NZS3101:2006 CL 2.3.2.2. - Except that for a singly reinforced wall for in-plane actions (flexure about the strong axis) a strength reduction factor of :math:`\phi` = 0.7 applies in accordance with NZS3101:2006 CL 2.3.2.2. - Using the lower 5% characteristic reinforcement yield strengths. - Using the lower 5% characteristic concrete 28 day compressive design strength. - **cpe_chk** - Capacity Protected Element (CPE) strength design check. Returns the capacity protected element section design capacity, i.e. undertakes the cross section analysis based on the following assumptions:- - Using a strength reduction factor of :math:`\phi` = 1.0 in accordance with NZS3101:2006 CL 2.3.2.2. - Using the lower 5% characteristic reinforcement yield strengths. - Using the lower 5% characteristic concrete 28 day compressive design strength. - **os_chk** - Overstrength (O/S) strength design check. Returns the O/S (overstrength) section design capacity, i.e. undertakes the cross section analysis based on the following assumptions:- - Using a strength reduction factor of :math:`\phi` = 1.0 in accordance with NZS3101:2006 CL 2.3.2.2. - Using a likely maximum reinforcement yield strength of :math:`\phi_{o,f_y}f_y`, typically :math:`\phi_{o,f_y}=1.35` in accordance with NZS3101:2006 CL 2.6.5.5(a) for grade 300E or grade 500E reinforcement which complies with AS/NZS4671. User may define custom overstrength factors when defining steel reinforcement materials using :class:`NZS3101.SteelBarNZ`. - Using a likely maximum compression strength of the concrete based on the lower 5% characteristic concrete 28 day strength plus 15 MPa, i.e. :math:`f'_c` + 15 in accordance with NZS3101:2006 CL 2.6.5.5(c). - **prob_chk** - Probable strength design check to NZSEE C5 guidelines based on NZS3101:2006 analysis provisions. Returns the probable strength section design capacity, i.e. undertakes the cross section analysis based on the following assumptions:- - Using a strength reduction factor of :math:`\phi` = 1.0 in accordance with NZSEE C5 assessment guidelines C5.5.1.4. - Using the probable reinforcement yield strengths in accordance with NZSEE C5 assessment guidelines C5.4.3, typically :math:`f_{yp}=1.08f_y` in accordance with NZSEE C5 assessment guidelines C5.4.3. User may define custom probable strengths when defining steel reinforcement materials using :class:`NZS3101.SteelBarNZ`. Note if one of the predefined probable strength based steel grade materials are being utilised, then the yield strength is inclusive of the 1.08 factor noted above. - Using the probable compressive strength of the concrete in accordance with NZSEE C5 guidelines C5.4.2.2, typically for specified 28 day concrete compressive strengths of less than or equal to 40 MPa, :math:`f'_{cp}=1.5f'_c`, and for greater than 40 MPa, :math:`f'_{cp}=1.4f'_c`. - **prob_os_chk** - Probable overstrength design check to NZSEE C5 guidelines based on NZS3101:2006 analysis provisions. Returns the probable O/S (overstrength) strength section design capacity, i.e. undertakes the cross section analysis based on the following assumptions:- - Using a strength reduction factor of :math:`\phi` = 1.0 in accordance with NZSEE C5 assessment guidelines C5.5.1.4. - Using the probable overstrength reinforcement yield strengths in accordance with NZSEE C5 assessment guidelines C5.4.3, typically :math:`f_o=\phi_of_{yp}` in accordance with NZSEE C5 assessment guidelines C5.4.3 & C5.5.2.3. User may define custom overstrength factors strengths when defining steel reinforcement materials using :class:`NZS3101.SteelBarNZ`. Note if one of the predefined probable strength based steel grade materials are being utilised, then the overstrength factor being applied to the yield strength is inclusive of the 1.08 factor on the lower bound yield strength. :math:`\quad\phi_o=\displaystyle{\frac{f_o}{f_{yp}}}` Where:- :math:`\quad f_{yp}=1.08f_y` - Using the probable compressive strength of the concrete in accordance with NZSEE C5 guidelines C5.4.2.2, typically for specified 28 day concrete compressive strengths of less than or equal to 40 MPa, :math:`f'_{cp}=1.5f'_c`, and for greater than 40 MPa, :math:`f'_{cp}=1.4f'_c`. Note there is no enhancement to concrete strength for overstrength checks in accordance with the NZSEE C5 assessment guidelines. :raises ValueError: If analysis type is not valid :raises ValueError: If concrete section contains a steel material that is not :class:`NZS3101.SteelBarNZ` :raises Exception: If a characteristic strength based analysis is specified, but a predefined probable strength based steel grade has been specified. Undertaking a non NZSEE C5 assessment guidelines analysis on a probable strength based steel grade is not consistent with an analysis to NZS3101:2006. :return: Returns the appropriate strength reduction factor :math:`\phi` and variables to indicate the type of analysis being requested. """ # determine analysis parameters if analysis_type.lower() in ["nom_chk"]: if self.section_type.lower() in ["wall_sr_s"]: phi = 0.7 else: phi = 0.85 cpe_design = False os_design = False prob_design = False elif analysis_type.lower() in ["cpe_chk"]: phi = 1.0 cpe_design = True os_design = False prob_design = False elif analysis_type.lower() in ["os_chk"]: phi = 1.0 cpe_design = False os_design = True prob_design = False elif analysis_type.lower() in ["prob_chk"]: phi = 1.0 cpe_design = False os_design = False prob_design = True elif analysis_type.lower() in ["prob_os_chk"]: phi = 1.0 cpe_design = False os_design = True prob_design = True else: raise ValueError( f"The specified analysis type of '{analysis_type}' should be either " f"'nom_chk', 'cpe_chk', 'os_chk', 'prob_chk' or 'prob_os_chk'" f"for a {self.analysis_code} code analysis" ) # check that if using a predefined probable strength based steel grade # that only a probable strength check is being undertaken _, nom_properties, prob_properties = self.predefined_steel_materials() for steel_geom in self.concrete_section.reinf_geometries_lumped: # check all materials are SteelBarNZ, else following code will fail if not isinstance(steel_geom.material, self.SteelBarNZ): raise ValueError("Material must be a SteelBarNZ") if ( analysis_type.lower() in ["nom_chk", "cpe_chk", "os_chk"] and steel_geom.material.steel_grade.lower() in prob_properties ): raise Exception( f"'{analysis_type}' analysis is not able to be undertaken on the " f"provided concrete section as it contains predefined steel " f"materials based on probable yield strengths and will give " f"erroneous results for a design to {self.analysis_code} as " f"material is not based on characteristic yield strengths. Define " f"a user defined or predefined steel material based on " f"characteristic yield properties to undertake a " f"'{analysis_type}' concrete section analysis.\n Note " f"predefined steel grades based on characteristic strength based " f"materials are {nom_properties}\n Note analysis types " f"consistent with a probable strength based material are " f"['prob_chk', 'prob_os_chk'], undertaken in accordance with NZSEE " f"C5 assessment guidelines" ) return phi, cpe_design, os_design, prob_design
[docs] def create_os_section( self, add_compressive_strength: float = 15 ) -> ConcreteSection: """Creates a concrete section with likely maximum material strength properties for a cross section analysis to NZS3101:2006. Concrete and steel reinforcement strength properties are modified in accordance with NZS3101:2006 CL 2.6.5.5 to reflect likely maximum material strengths. :param add_compressive_strength: The increase in compressive strength of the specified 28 day compressive strength of concrete to reflect the likely maximum material strength, defaults to an additional 15 MPa as per NZS3101:2006 CL 2.6.5.5(c) :raises ValueError: If concrete section contains a steel material that is not :class:`NZS3101.SteelBarNZ` :return: Returns a concrete section with material strengths modified to reflect likely maximum material strengths to enable an overstrength based analysis to be undertaken """ # create copy of concrete section to modify materials to overstrength properties os_concrete_section = deepcopy(self.concrete_section) # loop through all concrete geometries and update to overstrength properties for conc_geom in os_concrete_section.concrete_geometries: # retrieve previous nominal/characteristic material properties prev_compressive_strength = ( conc_geom.material.ultimate_stress_strain_profile.__getattribute__( "compressive_strength" ) ) prev_ultimate_strain = ( conc_geom.material.ultimate_stress_strain_profile.__getattribute__( "ultimate_strain" ) ) prev_density = conc_geom.material.density prev_colour_conc = conc_geom.material.colour # update concrete material to new material with overstrength properties conc_geom.material = self.create_concrete_material( compressive_strength=prev_compressive_strength + add_compressive_strength, ultimate_strain=prev_ultimate_strain, density=prev_density, colour=prev_colour_conc, ) # loop through all steel geometries and update to overstrength properties for steel_geom in os_concrete_section.reinf_geometries_lumped: # check all materials are SteelBarNZ, else following code will fail if not isinstance(steel_geom.material, self.SteelBarNZ): raise ValueError("Material must be a SteelBarNZ") # retrieve previous nominal/characteristic material properties prev_steel_grade = steel_geom.material.steel_grade prev_yield_strength = ( steel_geom.material.stress_strain_profile.__getattribute__( "yield_strength" ) ) prev_fracture_strain = ( steel_geom.material.stress_strain_profile.__getattribute__( "fracture_strain" ) ) prev_phi_os = steel_geom.material.phi_os prev_colour_steel = steel_geom.material.colour # update steel reinforcement material to new material with overstrength # properties steel_geom.material = self.create_steel_material( steel_grade=prev_steel_grade, yield_strength=prev_yield_strength * prev_phi_os, fracture_strain=prev_fracture_strain, phi_os=prev_phi_os, colour=prev_colour_steel, ) return os_concrete_section
[docs] def create_prob_section(self, os_design: bool = False) -> ConcreteSection: """Creates a concrete section with probable strength material properties for a cross section analysis to NZS3101:2006 & NZSEE C5 assessment guidelines. Concrete and steel reinforcement strength properties are modified in accordance with NZSEE C5 assessment guidelines C5.4.2.2 & C5.4.3. :param os_design: True if an overstrength probable capacity of a concrete section is required, then the material properties for concrete and lumped reinforcement are scaled to reflect the probable overstrength material strength properties, defaults to False which only scales the material properties for concrete to reflec tthe probable material strength properties :raises ValueError: If concrete section contains a steel material that is not :class:`NZS3101.SteelBarNZ` :return: Returns a concrete section with material strengths modified to reflect probable material strengths or probable overstrength material strengths, to enable a probable strength or probable overstrength based analysis to be undertaken """ # create copy of concrete section to modify materials to probable strength # properties prob_concrete_section = deepcopy(self.concrete_section) # loop through all concrete geometries & update to probable strength properties for conc_geom in prob_concrete_section.concrete_geometries: # retrieve previous nominal/characteristic material properties prev_compressive_strength = ( conc_geom.material.ultimate_stress_strain_profile.__getattribute__( "compressive_strength" ) ) prev_ultimate_strain = ( conc_geom.material.ultimate_stress_strain_profile.__getattribute__( "ultimate_strain" ) ) prev_density = conc_geom.material.density prev_colour_conc = conc_geom.material.colour # update concrete material to new material with probable strength properties prob_compressive_strength = self.prob_compressive_strength( prev_compressive_strength ) conc_geom.material = self.create_concrete_material( compressive_strength=prob_compressive_strength, ultimate_strain=prev_ultimate_strain, density=prev_density, colour=prev_colour_conc, ) # update concrete tensile strength to probable strength based value conc_geom.material.flexural_tensile_strength = ( self.concrete_tensile_strength( prev_compressive_strength, prob_design=True, ) ) # populate list with predefined probable strength based steel grades _, _, prob_properties = self.predefined_steel_materials() # loop through all steel geometries and update to probable strength properties for steel_geom in prob_concrete_section.reinf_geometries_lumped: # check all materials are SteelBarNZ, else following code will fail if not isinstance(steel_geom.material, self.SteelBarNZ): raise ValueError("Material must be a SteelBarNZ") # retrieve previous nominal/characteristic material properties prev_steel_grade = steel_geom.material.steel_grade prev_yield_strength = ( steel_geom.material.stress_strain_profile.__getattribute__( "yield_strength" ) ) prev_fracture_strain = ( steel_geom.material.stress_strain_profile.__getattribute__( "fracture_strain" ) ) prev_phi_os = steel_geom.material.phi_os prev_colour_steel = steel_geom.material.colour # determine appropriate scaling factor for yield strength depending on # defined material and analysis type if prev_steel_grade not in prob_properties and os_design: mult_prob_strength = prev_phi_os elif prev_steel_grade not in prob_properties and not os_design: mult_prob_strength = 1.08 elif os_design: mult_prob_strength = prev_phi_os else: mult_prob_strength = 1.0 # update steel reinforcement material to new material with probable strength # properties steel_geom.material = self.create_steel_material( steel_grade=prev_steel_grade, yield_strength=prev_yield_strength * mult_prob_strength, fracture_strain=prev_fracture_strain, phi_os=prev_phi_os, colour=prev_colour_steel, ) return prob_concrete_section
[docs] def ultimate_bending_capacity( self, pphr_class: str = "NDPR", analysis_type: str = "nom_chk", theta: float = 0, n_design: float = 0, ) -> Tuple[res.UltimateBendingResults, res.UltimateBendingResults, float]: r"""Calculates the ultimate bending capacity with capacity factors to NZS3101:2006 or the NZSEE C5 assessment guidelines dependant on analysis type. :param analysis_type: The type of cross section analysis to undertake on the defined concrete section, by default a normal nominal strength design check is undertaken, refer to :meth:`NZS3101.capacity_reduction_factor` for further information on analysis types. :param theta: Angle (in radians) the neutral axis makes with the horizontal axis (:math:`-\pi \leq \theta \leq \pi`) :param n_design: Axial design force (:math:`N^*`) :return: Factored and unfactored ultimate bending results objects, and capacity reduction factor *(factored_results, unfactored_results, phi)* """ # Check NZS3101:2006 CL 5.2.1 concrete compressive strength limits # (dependant on PPHR class) self.check_f_c_limits(pphr_class) # Check NZS3101:2006 CL 5.3.3 steel reinforcement yield strength limit self.check_f_y_limit() # determine strength reduction factor based on analysis type specified phi, cpe_design, os_design, prob_design = self.capacity_reduction_factor( analysis_type ) # determine the section to analyse analysis_section = self.assign_analysis_section(analysis_type) # Check if axial load is within the axial tension and compression capacity # limits of the analysis section self.check_axial_limits(n_design, phi, cpe_design, os_design, prob_design) # calculate ultimate bending capacity ult_res = analysis_section.ultimate_bending_capacity( theta=theta, n=n_design / phi ) # factor ultimate results f_ult_res = deepcopy(ult_res) f_ult_res.n *= phi f_ult_res.m_x *= phi f_ult_res.m_y *= phi f_ult_res.m_xy *= phi return f_ult_res, ult_res, phi
[docs] def moment_interaction_diagram( self, pphr_class: str = "NDPR", analysis_type: str = "nom_chk", theta: float = 0, control_points: List[Tuple[str, float]] = [ ("fy", 1.0), ("fy", 0.5), ("fy", 0.0), ("N", 0.0), ], labels: Optional[List[str]] = None, n_points: int = 24, n_spacing: Optional[int] = None, max_comp_labels: Optional[List[str]] = None, progress_bar: bool = True, ) -> Tuple[res.MomentInteractionResults, res.MomentInteractionResults, List[float]]: r"""Generates a moment interaction diagram with capacity factors and material strengths to NZS3101:2006 or the NZSEE C5 assessment guidelines dependant on analysis type. :param pphr_class: Potential Plastic Hinge Region (PPHR) classification, **NDPR**/**LDPR**/**DPR**. - **NDPR** = Nominally Ductile Plastic Region - **LDPR** = Limited Ductile Plastic Region - **DPR** = Ductile Plastic Region :param analysis_type: The type of cross section analysis to undertake on the defined concrete section, by default a normal nominal strength design check is undertaken, refer to :meth:`NZS3101.capacity_reduction_factor` for further information on analysis types. :param theta: Angle (in radians) the neutral axis makes with the horizontal axis (:math:`-\pi \leq \theta \leq \pi`) :param control_points: List of additional control points to add to the moment interaction diagram. The default control points include the balanced point, the 50% reinforcement strain point, the 0% reinforcement strain point (``fy=1``, ``fy=0.5``, ``fy=0``), and the pure bending point (``N=0``). Control points may lie outside the limits of the moment interaction diagram as long as equilibrium can be found. :param labels: List of labels to apply to the ``limits`` and ``control_points`` for plotting purposes. The first two values in ``labels`` apply labels to the ``limits``, the remaining values apply labels to the ``control_points``. If a single value is provided, this value will be applied to both ``limits`` and all ``control_points``. The length of ``labels`` must equal ``1`` or ``2 + len(control_points)``. :param n_points: Number of points to compute including and between the ``limits`` of the moment interaction diagram. Generates equally spaced neutral axes between the ``limits``. :param n_spacing: If provided, overrides ``n_points`` and generates the moment interaction diagram using ``n_spacing`` equally spaced axial loads. Note that using ``n_spacing`` negatively affects performance, as the neutral axis depth must first be located for each point on the moment interaction diagram. :param max_comp_labels: Labels to apply to the ``max_comp`` intersection points, first value is at zero moment, second value is at the intersection with the interaction diagram. :param progress_bar: If set to True, displays the progress bar :return: Factored and unfactored moment interaction results objects, and list of capacity reduction factors *(factored_results, unfactored_results, phis)* """ # Check NZS3101:2006 CL 5.2.1 concrete compressive strength limits # (dependant on PPHR class) self.check_f_c_limits(pphr_class) # Check NZS3101:2006 CL 5.3.3 steel reinforcement yield strength limit self.check_f_y_limit() # determine strength reduction factor based on analysis type specified phi, cpe_design, os_design, prob_design = self.capacity_reduction_factor( analysis_type ) # determine the section to analyse analysis_section = self.assign_analysis_section(analysis_type) # determine NZS3101:2006 maximum compression capacity max_comp = phi * self.max_comp_strength( cpe_design=cpe_design, os_design=os_design, prob_design=prob_design, ) # analyse the concrete section to create the M/N interaction curve mi_res = analysis_section.moment_interaction_diagram( theta=theta, limits=[("kappa0", 0.0), ("d_n", 1e-6)], control_points=control_points, labels=labels, n_points=n_points, n_spacing=n_spacing, max_comp=max_comp, max_comp_labels=max_comp_labels, progress_bar=progress_bar, ) # make a copy of the results to factor f_mi_res = deepcopy(mi_res) # list to store phis phis = [] # factor results for ult_res in f_mi_res.results: ult_res.n *= phi ult_res.m_x *= phi ult_res.m_y *= phi ult_res.m_xy *= phi phis.append(phi) return f_mi_res, mi_res, phis
[docs] def biaxial_bending_diagram( self, pphr_class: str = "NDPR", analysis_type: str = "nom_chk", n_design: float = 0.0, n_points: int = 48, progress_bar: bool = True, ) -> Tuple[res.BiaxialBendingResults, List[float]]: """Generates a biaxial bending with capacity factors to NZS3101:2006 or the NZSEE C5 assessment guidelines dependant on analysis type. :param pphr_class: Potential Plastic Hinge Region (PPHR) classification, **NDPR**/**LDPR**/**DPR**. - **NDPR** = Nominally Ductile Plastic Region - **LDPR** = Limited Ductile Plastic Region - **DPR** = Ductile Plastic Region :param analysis_type: The type of cross section analysis to undertake on the defined concrete section, by default a normal nominal strength design check is undertaken, refer to :meth:`NZS3101.capacity_reduction_factor` for further information on analysis types. :param n_design: Axial design force (:math:`N^*`) :param n_points: Number of calculation points for neutral axis orientation :param progress_bar: If set to True, displays the progress bar :return: Factored biaxial bending results object and list of capacity reduction factors *(factored_results, phis)*. """ # Check NZS3101:2006 CL 5.2.1 concrete compressive strength limits # (dependant on PPHR class) self.check_f_c_limits(pphr_class) # Check NZS3101:2006 CL 5.3.3 steel reinforcement yield strength limit self.check_f_y_limit() # initialise results f_bb_res = res.BiaxialBendingResults(n=n_design) # list to store phis phis = [] # calculate d_theta d_theta = 2 * np.pi / n_points # generate list of thetas theta_list = np.linspace(start=-np.pi, stop=np.pi - d_theta, num=n_points) # function that performs biaxial bending analysis def bbcurve(progress=None): # loop through thetas for theta in theta_list: # factored capacity f_ult_res, _, phi = self.ultimate_bending_capacity( pphr_class, analysis_type, theta=theta, n_design=n_design, ) f_bb_res.results.append(f_ult_res) phis.append(phi) if progress: progress.update(task, advance=1) if progress_bar: # create progress bar progress = utils.create_known_progress() with Live(progress, refresh_per_second=10) as live: task = progress.add_task( description="[red]Generating biaxial bending diagram", total=n_points, ) bbcurve(progress=progress) progress.update( task, description=( "[bold green]:white_check_mark: Biaxial bending diagram" " generated" ), ) live.refresh() else: bbcurve() # add first result to end of list top f_bb_res.results.append(f_bb_res.results[0]) phis.append(phis[0]) return f_bb_res, phis