concreteproperties.design_codes.as3600.AS3600#
- class AS3600[source]#
Bases:
DesignCode
Design code class for Australian standard AS 3600:2018.
Note
Note that this design code only supports
Concrete
andSteelBar
material objects. MeshedSteel
material objects are not supported as this falls under the composite structures design code.Inits the AS3600 class.
Methods
Assigns a concrete section to the design code.
Generates a biaxial bending with capacity factors to AS 3600:2018.
Calculates cracked section properties.
Calculates stresses within the reinforced concrete section assuming a cracked section.
Calculates service stresses within the reinforced concrete section.
Calculates ultimate stresses within the reinforced concrete section.
Calculates stresses within the reinforced concrete section assuming an uncracked section.
Returns the AS 3600:2018 capacity reduction factor (Table 2.2.2).
Returns a concrete material object to AS 3600:2018.
Returns a steel bar material object.
Returns the gross section properties of the reinforced concrete section.
Returns k_uo for the reinforced concrete cross-section given
theta
.Returns n_ub for the reinforced concrete cross-section given
theta
.Transforms gross section properties.
Performs a moment curvature analysis.
Generates a moment interaction diagram with capacity factors to AS 3600:2018.
Calculates the squash and tensile load of the reinforced concrete section.
Calculates the ultimate bending capacity with capacity factors to AS 3600:2018.
- assign_concrete_section(concrete_section)[source]#
Assigns a concrete section to the design code.
- Parameters
concrete_section (
ConcreteSection
) – Concrete section object to analyse
- create_concrete_material(compressive_strength, colour='lightgrey')[source]#
Returns a concrete material object to AS 3600:2018.
Material assumptions
Density: 2400 kg/m3
Elastic modulus: Interpolated from Table 3.1.2
Service stress-strain profile: Linear with no tension, compressive strength at \(0.9f'_c\)
Ultimate stress-strain profile: Rectangular stress block, parameters from Cl. 8.1.3
Alpha squash: From Cl. 10.6.2.2
Flexural tensile strength: From Cl. 3.1.1.3
- Parameters
compressive_strength (
float
) – Characteristic compressive strength of concrete at 28 days in megapascals (MPa)colour (
str
, default:'lightgrey'
) – Colour of the concrete for rendering
- Raises
ValueError – If
compressive_strength
is not between 20 MPa and 100 MPa.- Returns
Concrete
– Concrete material object
- create_steel_material(yield_strength=500, ductility_class='N', colour='grey')[source]#
Returns a steel bar material object.
Material assumptions
Density: 7850 kg/m3
Elastic modulus: 200000 MPa
Stress-strain profile: Elastic-plastic, fracture strain from Table 3.2.1
- Parameters
yield_strength (
float
, default:500
) – Steel yield strengthductility_class (
str
, default:'N'
) – Steel ductility class (“N” or “L”)colour (
str
, default:'grey'
) – Colour of the steel for rendering
- Raises
ValueError – If
ductility_class
is not “N” or “L”- Returns
SteelBar
– Steel material object
- squash_tensile_load()[source]#
Calculates the squash and tensile load of the reinforced concrete section.
- Returns
Tuple
[float
,float
] – Squash and tensile load
- capacity_reduction_factor(n_u, n_ub, n_uot, k_uo, phi_0)[source]#
Returns the AS 3600:2018 capacity reduction factor (Table 2.2.2).
n_ub
andphi_0
only required for compression,n_uot
only required for tension.- Parameters
n_u (
float
) – Axial force in membern_ub (
float
) – Axial force at balanced pointn_uot (
float
) – Axial force at ultimate tension loadk_uo (
float
) – Neutral axis parameter at pure bendingphi_0 (
float
) – Capacity reduction factor for dominant compression
- Returns
float
– Capacity reduction factor
- get_k_uo(theta)[source]#
Returns k_uo for the reinforced concrete cross-section given
theta
.- Parameters
theta (
float
) – Angle (in radians) the neutral axis makes with the horizontal axis (\(-\pi \leq \theta \leq \pi\))- Returns
float
– Bending parameter k_uo
- get_n_ub(theta)[source]#
Returns n_ub for the reinforced concrete cross-section given
theta
.- Parameters
theta (
float
) – Angle (in radians) the neutral axis makes with the horizontal axis (\(-\pi \leq \theta \leq \pi\))- Returns
float
– Balanced axial force n_ub
- ultimate_bending_capacity(theta=0, n_design=0, phi_0=0.6)[source]#
Calculates the ultimate bending capacity with capacity factors to AS 3600:2018.
- Parameters
theta (
float
, default:0
) – Angle (in radians) the neutral axis makes with the horizontal axis (\(-\pi \leq \theta \leq \pi\))n_design (
float
, default:0
) – Design axial force, N*phi_0 (
float
, default:0.6
) – Compression dominant capacity reduction factor, see Table 2.2.2(d)
- Returns
Tuple
[UltimateBendingResults
,UltimateBendingResults
,float
] – Factored and unfactored ultimate bending results objects, and capacity reduction factor (factored_results, unfactored_results, phi)
- moment_interaction_diagram(theta=0, limits=[('D', 1.0), ('N', 0.0)], control_points=[('fy', 1.0)], labels=None, n_points=24, n_spacing=None, phi_0=0.6, progress_bar=True)[source]#
Generates a moment interaction diagram with capacity factors to AS 3600:2018.
See
concreteproperties.concrete_section.ConcreteSection.moment_interaction_diagram()
for allowable control points.Note
When providing
"N"
tolimits
orcontrol_points
,"N"
is taken to be the unfactored net (nominal) axial load \(N^{*} / \phi\).- Parameters
theta (
float
, default:0
) – Angle (in radians) the neutral axis makes with the horizontal axis (\(-\pi \leq \theta \leq \pi\))limits (
List
[Tuple
[str
,float
]], default:[('D', 1.0), ('N', 0.0)]
) – List of control points that define the start and end of the interaction diagram. List length must equal two. The default limits range from concrete decompression strain to the pure bending point.control_points (
List
[Tuple
[str
,float
]], default:[('fy', 1.0)]
) – List of additional control points to add to the moment interaction diagram. The default control points include the balanced point (fy=1
). Control points may lie outside the limits of the moment interaction diagram as long as equilibrium can be found.labels (
Optional
[List
[str
]], default:None
) – List of labels to apply to thelimits
andcontrol_points
for plotting purposes. The first two values inlabels
apply labels to thelimits
, the remaining values apply labels to thecontrol_points
. If a single value is provided, this value will be applied to bothlimits
and allcontrol_points
. The length oflabels
must equal1
or2 + len(control_points)
.n_points (
int
, default:24
) – Number of points to compute including and between thelimits
of the moment interaction diagram. Generates equally spaced neutral axes between thelimits
.n_spacing (
Optional
[int
], default:None
) – If provided, overridesn_points
and generates the moment interaction diagram usingn_spacing
equally spaced axial loads. Note that usingn_spacing
negatively affects performance, as the neutral axis depth must first be located for each point on the moment interaction diagram.phi_0 (
float
, default:0.6
) – Compression dominant capacity reduction factor, see Table 2.2.2(d)progress_bar (
bool
, default:True
) – If set to True, displays the progress bar
- Returns
Tuple
[MomentInteractionResults
,MomentInteractionResults
,List
[float
]] – Factored and unfactored moment interaction results objects, and list of capacity reduction factors (factored_results, unfactored_results, phis)
- biaxial_bending_diagram(n_design=0, n_points=48, phi_0=0.6, progress_bar=True)[source]#
Generates a biaxial bending with capacity factors to AS 3600:2018.
- Parameters
n_design (
float
, default:0
) – Design axial force, N*n_points (
int
, default:48
) – Number of calculation pointsphi_0 (
float
, default:0.6
) – Compression dominant capacity reduction factor, see Table 2.2.2(d)progress_bar (
bool
, default:True
) – If set to True, displays the progress bar
- Returns
Tuple
[BiaxialBendingResults
,List
[float
]] – Factored biaxial bending results object and list of capacity reduction factors (factored_results, phis)
- calculate_cracked_properties(**kwargs)#
Calculates cracked section properties.
- Parameters
kwargs – Keyword arguments passed to
calculate_cracked_properties()
- Returns
CrackedResults
– Cracked results object
- calculate_cracked_stress(**kwargs)#
Calculates stresses within the reinforced concrete section assuming a cracked section.
- Parameters
kwargs – Keyword arguments passed to
calculate_cracked_stress()
- Returns
StressResult
– Stress results object
- calculate_service_stress(**kwargs)#
Calculates service stresses within the reinforced concrete section.
- Parameters
kwargs – Keyword arguments passed to
calculate_service_stress()
- Returns
StressResult
– Stress results object
- calculate_ultimate_stress(**kwargs)#
Calculates ultimate stresses within the reinforced concrete section.
- Parameters
kwargs – Keyword arguments passed to
calculate_ultimate_stress()
- Returns
StressResult
– Stress results object
- calculate_uncracked_stress(**kwargs)#
Calculates stresses within the reinforced concrete section assuming an uncracked section.
- Parameters
kwargs – Keyword arguments passed to
calculate_uncracked_stress()
- Returns
StressResult
– Stress results object
- get_gross_properties(**kwargs)#
Returns the gross section properties of the reinforced concrete section.
- Parameters
kwargs – Keyword arguments passed to
get_gross_properties()
- Returns
GrossProperties
– Concrete properties object
- get_transformed_gross_properties(**kwargs)#
Transforms gross section properties.
- Parameters
kwargs – Keyword arguments passed to
get_transformed_gross_properties()
- Returns
TransformedGrossProperties
– Transformed concrete properties object
- moment_curvature_analysis(**kwargs)#
Performs a moment curvature analysis. No reduction factors are applied to the moments.
- Parameters
kwargs – Keyword arguments passed to
moment_curvature_analysis()
- Returns
MomentCurvatureResults
– Moment curvature results object